THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Презентация по слайдам

Текст слайда: Производство, передача и использование электрической энергии. Разработал: Н.В.Грузинцева. г. Красноярск


Текст слайда: Цель проекта: Понимание производства, передачи и использования электрической энергии. Задачи проекта, рассмотреть: Генерирование электрической энергии. Трансформаторы. Производство и использование электрической энергии. Передача электроэнергии. Эффективное использование электроэнергии.


Текст слайда: Вступление: Электрический ток вырабатывается в генераторах-устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся: Гальванические элементы. Электростатические батареи. Термобатареи. Солнечные батареи. и т. п.


Текст слайда: Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, то говорят, что они обладают энергией. Энергия – физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергию выражают в системе СИ в тех же единицах, что и работу, т.е. в джоулях.


Текст слайда: Преобладают электромеханические индукционные генераторы переменного тока. Механическая энергия Электрическая энергия Для получения большого магнитного потока в генераторах применяют специальную магнитную систему состоящую из: Статор; Генератор; Кольца; Турбина; Корпус; Ротор; Щётки; Возбудитель.


Текст слайда: Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов. Устройство трансформатора: Замкнутый стальной сердечник, собранный из пластин; Две (иногда более) катушки с проволочными обмотками. первичная, вторичная, применяемая к источнику к ней присоединяют переменного напряжения. нагрузку, т.е. приборы и устройства, потребляющие электроэнергию.


Текст слайда: Источник энергии на ТЭС: уголь, газ, нефть, мазут, горючие сланцы, угольная пыль. Дают 40% электроэнергии. Внутренняя Энергия проводов ТЭС ПОТРЕБИТЕЛЬ


Текст слайда: На ГЭС для вращения роторов генераторов используется потенциальная энергия воды. Дают 20% электроэнергии. ГЭС ПОТРЕБИТЕЛЬ Внутренняя энергия проводов


Текст слайда: промышленность транспорт производственные и бытовые нужды механическая энергия ЭЛЕКТРОЭНЕРГИЯ

Слайд №10


Текст слайда: Электрические станции ряда районов страны объединены высоковольтными линиями электропередачи, образующие общую электрическую цепь, к которой присоединены потребители. Такое объединение называется энергосистемой. Передача электроэнергии. заметные потери Потребитель трансформатор напряжение понижается; трансформатор напряжение увеличивается; сила тока уменьшается.




Мощность, передаваемая по линии трехфазного тока P ф = U ф I ф cosφ ф Мощность трех фаз при равномерной нагрузке: P = 3P ф = 3U ф I ф cosφ ф Когда нагрузки соединены звездой, то: U ф = U л /3; I ф = I л P = (3U л I л /3) cosφ ф = 3IUcosφ. При соединении треугольником: I ф = U л /3; U ф = U л Мощность трехфазной системы: P = 3*IUcosφ




Коэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка. cos φ = P/S Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы. Низкий коэффициент мощности потребителя приводит: 1. к необходимости увеличения полной мощности трансформаторов и электрических станций; 2. к понижению КПД вырабатывающих и трансформирующих элементов цепи; 3. к увеличению потерь мощности и напряжения в проводах. Необходимо, чтобы как можно большую часть в полной мощности составляла именно активная мощность, в этом случае коэффициент мощности будет ближе к единице. Для увеличения коэффициента мощности можно: изменить мощность и тип устанавливаемых электродвигателей; увеличить загрузку электродвигателей в процессе работы; уменьшить время работы в холостом режиме оборудования потребляющего индуктивную мощность.


Электрическая подстанция Электрическая подстанция электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств.


Повышающие и понижающие подстанции Повышающая подстанция, в которой стоят повышающие трансформаторы, повышает электрическое напряжение при соответствующем снижении значения силы тока, в то время как понижающая подстанция уменьшает выходное напряжение при пропорциональном увеличении силы тока. Необходимость в повышении передаваемого напряжения возникает в целях экономии металла, используемого в проводах ЛЭП. Уменьшение силы проходящего тока влечёт за собой уменьшение потери энергии, которая находится в прямой квадратичной зависимости от значения силы тока. Основная причина повышения напряжения состоит в том, что чем выше напряжение, тем большую мощность и на большее расстояние можно передать по линии электропередачи.


Передача электроэнергии постоянным током Наиболее перспективный способ использование постоянного тока. ЛЭП постоянного тока позволяют передать большую энергию по тем же проводам, кроме того, исчезают затруднения, связанные с индуктивным сопротивлением и емкостью линий. Переменное напряжение повышение переменного напряжения (трансформатор) постоянное напряжение переменное напряжение (выпрямитель) (инвертор) понижение до нужного значения. (трансформатор)


Энергосистемы Энергосистемы электрические станции ряда районов страны, объединенные высоковольтными линиями передач, образующие общую электрическую сеть, к которой присоединены потребители. Энергосистема обеспечивает бесперебойность подачи энергии потребителям вне зависимости от места их расположения. Сейчас почти вся Россия обеспечивается электроэнергией объединенными энергетическими системами.


Объединённая энергосистема Объединенная энергетическая система (ОЭС) совокупность нескольких энергетических систем, объединенных общим режимом работы, имеющая общее диспетчерское управление как высшую ступень управления по отношению к диспетчерским управлениям входящих в нее энергосистем. В составе Единой энергетической системы России выделяют шесть ОЭС, седьмая - ОЭС Востока - работает изолированно от Единой энергетической системы. ОЭС Центра (Астраханскую, Белгородскую, Брянскую, Владимирскую, Волгоградскую, Вологодскую, Воронежскую, Нижегородскую, Ивановскую, Тверскую, Калужскую, Костромскую, Курскую, Липецкую, Московскую, Орловскую, Рязанскую, Смоленскую, Тамбовскую, Тульскую и Ярославскую энергосистемы). ОЭС Юга (ранее - ОЭС Северного Кавказа), включающая в себя Дагестанскую, Калмыцкую, Карачаево-Черкесскую, Кабардино-Балкарскую, Кубанскую, Ростовскую, Северо-Осетинскую, Ставропольскую, Чеченскую и Ингушскую энергосистемы.


ОЭС Северо-запада, включающая в себя Архангельскую, Карельскую, Кольскую, Коми, Ленинградскую, Новгородскую, Псковскую и Калининградскую энергосистемы. ОЭС Средней Волги, включающая в себя Марийскую, Мордовскую, Пензенскую, Самарскую, Саратовскую, Татарскую, Ульяновскую и Чувашскую энергосистемы. ОЭС Урала, включающая в себя Башкирскую, Кировскую, Курганскую, Оренбургскую, Пермскую, Свердловскую, Тюменскую, Удмуртскую и Челябинскую энергосистемы. ОЭС Сибири, включающая в себя Алтайскую, Бурятскую, Иркутскую, Красноярскую, Кузбасскую, Новосибирскую, Омскую, Томскую, Хакасскую и Читинскую энергосистемы. ОЭС Востока, включающая в себя Амурскую, Дальневосточную и Хабаровскую энергосистемы.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Использование электроэнергии в областях науки Наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. Около 80% прироста ВВП развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на растояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной« революции в экономике развитых стран. Очень бурно развивается наука в области средств связи и коммуникаций.

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

краткое содержание других презентаций

«Электромагнитные колебания 11 класс» - Колебания происходят с большой частотой. Определение. 11 класс. Частота и период колебаний в контуре. Электромагнитные колебания. Свободные и вынужденные колебания. Уравнения электромагнитных колебаний. Энергия электрического поля конденсатора. Колебательный контур. Рис. 4.4 стр.83. Гармонические колебания заряда, тока и напряжения в контуре описываются уравнениями: Энергия магнитного поля катушки.

«Радиосвязь физика» - Принимают и обрабатывают сигнал, полученный со спутника. Вопросы. Рассчитать, что для волн длиной 10 и 1000 метров частота соответственно …?….. Таким образом, какова основная задача модема? Частота электромагнитных колебаний равна: Чему равен период? Тема: Принципы радиосвязи. Скорость э/м волны? Чем отличается открытый колебательный контур от закрытого? Радио - работают в радиодиапазоне, используют собственные наборы частот и протоколы. На что влияет скорость модема?

«Оптика 11 класс» - ? = 90. Посредством глаза, а не глазом Смореть на мир умеет разум. Изображение удалённых предметов на сетчатке оказывается нечётким. Типы отражений света. Проект презентации: «От солнечного зайчика до геометрической оптики». Зеркальное отражение. Зеркало. Диффузное отражение. Отражение света. Близорукость. Как закон отражения света используется в повседневной жизни? Проблемный вопрос. Роль зеркал в жизни человека, в быту и технике.

«Шкала электромагнитных излучений» - Экспертная оценка «фирмы» (каждый пункт оценивается по 5-бальной системе). В чем отличие механических волн от электромагнитных? Урок – деловая игра. 11 класс. Что является источником электромагнитных волн? Что доказывает явление поляризации? Распространяются в вакууме со скоростью 300 000 км/с. Шкала электромагнитных излучений. Почему? Что называется электромагнитной волной?

«Использование электрической электроэнергии» - Передача и распределение электроэнергии. Всё большее количество железнодорожных линий переводится на электрическую тягу. Производство, использование и передача электроэнергии. Основная часть промышленных предприятий работает на электрической энергии. Использование электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Крупным потребителем является также транспорт. Удвоение потребления электроэнергии происходит за 10 лет.

«Излучение и спектры» - Например северное сияние, надписи на магазинах. Спектральный анализ. Излучения атома. Тепловыми источниками являются: Солнце, пламя огня, или лампа накаливания. Наиболее простой и распространенный вид излучения. В природе мы можем наблюдать спектр, когда на небе появляется Радуга. Спектры, Начать просмотр. Катодолюминесценция. Полосатый спектр. (Лат. Католюминесценция. Электролюминесценция. Перейти к содержанию. Непрерывный спектр. Спектры в природе. Спектр. Линейчатый спектр.

Презентация на тему: Электроэнергия и её эффективное использование
















1 из 15

Презентация на тему: Электроэнергия и её эффективное использование

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Электроэнергия Электроэнергия Электроэнергия - физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Основной единицей измерения выработки и потребления электрической энергии служит киловатт-час (и кратные ему единицы). Для более точного описания используются такие параметры, как напряжение, частота и количество фаз (для переменного тока), номинальный и максимальный электрический ток. Электрическая энергия является также товаром, который приобретают участники оптового рынка (энергосбытовые компании и крупные потребители-участники опта) у генерирующих компаний и потребители электрической энергии на розничном рынке у энергосбытовых компаний. Цена на электрическую энергию выражается в рублях и копейках за потребленный киловатт-час (коп/кВт·ч, руб/кВт·ч) либо в рублях за тысячу киловатт-часов (руб/тыс кВт·ч). Последнее выражение цены используется обычно на оптовом рынке. Динамика мирового производства электроэнергии по годам

№ слайда 3

Описание слайда:

Динамика мирового производства электроэнергии Динамика мирового производства электроэнергии Год млрд Квт*час 1890 - 9 1900 - 15 1914 - 37,5 1950 - 950 1960 - 2300 1970 - 5000 1980 - 8250 1990 - 11800 2000 - 14500 2002 - 16100,2 2003 - 16700,9 2004 - 17468,5 2005 - 18138,3

№ слайда 4

Описание слайда:

Промышленное производство электроэнергии Промышленное производство электроэнергии В эпоху индустриализации подавляющий объем электроэнергии вырабатывается промышленным способом на электростанциях. Доля вырабатываемой электроэнергии в России (2000 г) Доля вырабатываемой электроэнергии в мире Теплоэлектростанции (ТЭC) 67%, 582,4 млрд кВт·ч Гидроэлектростанции (ГЭС) 19%; 164,4 млрд кВт·ч Атомные станции (АЭС) 15%; 128,9 млрд кВт·ч В последнее время в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерного географического распределения становится целесообразным вырабатывать электроэнергию способом используя ветроэнергетические установоки, солнечные батарей, малые газогенераторы. В некоторых государствах, например в Германии, приняты специальные программы, поощряющие инвестиции в производство электроэнергии домохозяйствами.

№ слайда 5

Описание слайда:

№ слайда 6

Описание слайда:

Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Классификация электрических сетей Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока. Назначение, область применения Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей. Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.) Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей. Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).

№ слайда 7

Описание слайда:

История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году, когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4%, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения, изобретенного самим ученым. История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году, когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4%, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения, изобретенного самим ученым. В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт*ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО. Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн. кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

№ слайда 8

Описание слайда:

В 1940 г суммарная мощность советских электростанций составила 10,7 млн кВт, а годовая выработка электроэнергии превысила 50 млрд кВт*ч, что в 25 раз превышало соответствующие показатели 1913 года. После перерыва, вызванного Великой Отечественной войной, электрификация СССР возобновилась, достигнув в 1950 г уровня выработки 90 млрд кВт*ч. В 1940 г суммарная мощность советских электростанций составила 10,7 млн кВт, а годовая выработка электроэнергии превысила 50 млрд кВт*ч, что в 25 раз превышало соответствующие показатели 1913 года. После перерыва, вызванного Великой Отечественной войной, электрификация СССР возобновилась, достигнув в 1950 г уровня выработки 90 млрд кВт*ч. В 50-е годы XX века, в ход были пущены такие электростанции, как Цимлянская, Гюмушская, Верхне-Свирская, Мингечаурская и другие. К середине 60-х годов, СССР занимал второе место в мире по выработке электроэнергии после США. Основные технологические процессы в электроэнергетике

№ слайда 9

Описание слайда:

Генерация электрической энергии Генерация электрической энергии Генерация электроэнергии - это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации: Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов: Конденсационные (КЭС, также используется старая аббревиатура ГРЭС); Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

№ слайда 10

Описание слайда:

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (т.е. энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные. Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (т.е. энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные.

№ слайда 11

Описание слайда:

Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии.

№ слайда 12

Описание слайда:

Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом.

Описание слайда:

Удовлетворить этот спрос можно двумя способами: Удовлетворить этот спрос можно двумя способами: I. Строительство новых мощных электростанций:тепловых, гидравлических и атомнх,но это требует времени и больших затрат. Так же на их функционирование нужны невозобновляемые природные ресурсы. II. Разработка новых методов и устройств.

№ слайда 15

Описание слайда:

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама