THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В этой статье:

«Как делают алмазы?» - этим вопросом задались еще в начале прошлого века, от поиска ответа на него зависело многое. Будучи самым твердым минералом на планете, алмаз мог быть использован в различных сферах деятельности. Алмазы являются важной составляющей украшений, также важна их роль в промышленности.

История

Первый синтетический алмаз, не уступающий по качеству натуральному минералу, был синтезирован в 1967 году ювелиром из Бельгии - мистером Бонруа. Основой для минерала послужил кристалл размером в 1 миллиметр, полученный в лаборатории Киева.

Открытие искусственных алмазов сделал советский ученый Овсей Ильич Лепунский

Идея о возможности получения искусственных алмазов была к этому времени не нова. Разработки в этом направлении велись с конца XIX века. Были созданы синтезированный гранат и рубин. В 1939 ученый из СССР О. И. Лейпунский выдвинул теорию о том, что при температуре, не менее чем в 2000 градусов и наличии давления более 6 ГПа, графит станет алмазом.

Доказательств сделанному утверждению в то время не поступило: недостаточное оснащение лабораторий конца 40-х годов не позволяло провести какие-либо опыты.

Оборудование для проведения опытов по созданию алмазов появилось лишь спустя 20 лет. В 1960 году в Московском Институте физики высоких давлений опыт по превращению графита в алмаз все же был проведен. Руководил процессом академик Л. Ф. Верещагин.

Спустя некоторое время в Институте сверхтвердых материалов в Киеве под управлением В. Н. Бакуля было создано оборудование, позволяющее создавать алмазы в промышленных масштабах.

Способы получения минералов

Природный алмаз образуется под воздействием высоких температур и давления. Залежи алмазов обнаружены в так называемых кимберлитовых трубках по всему миру. Крупнейшие кимберлитовые трубки находятся в Южной Африке, Канаде, Якутии. Найденные там алмазы были образованы еще в период формирования земной коры, когда раскаленная магма проталкивалась к поверхности Земли, проходя сквозь насыщенные углеродом породы.

Процесс образования алмазов требует создания условий, приближенных к тем, что описаны выше, что не позволяет ответить на вопрос о том, как сделать алмаз, однозначно. Существует несколько способов получения синтетических алмазов:

1) Создание алмазов в условиях высокого давления. Наиболее надежный и действенный. Формирование минерала происходит в условиях максимально приближенных к натуральным. Для получения алмаза потребуется пресс, способный поддерживать высокое давление. Под пресс ставится цилиндр, внутри которого располагается графит. В цилиндре имеются отверстия для воды и хладагенов.

Вода поступает в цилиндр под давлением, сжимает графит и ускоряет процесс его заморозки. Графитовая камера охлаждается до температуры в минус 12 градусов Цельсия. При этом сжатие цилиндра продолжается, увеличиваясь до 20 тысяч атмосфер в конце процесса. После заморозки через графит пропускается электрический ток. Спустя некоторое время камера размораживается, из цилиндра извлекается алмаз.

Созданный таким способом минерал во всем идентичен настоящему алмазу. Исключением является его оттенок - цвет алмаза серый. Прочность такого минерала в несколько раз превышает натуральный, что позволяет использовать его во многих областях промышленной деятельности. Использование пресса и давления позволяет получить технический алмаз, не находящий применения в ювелирном деле.

2) Создание алмазов в метане. Необходимо специальное оборудование. Минерал образуется в лишенной воздуха и наполненной метаном сфере. Готовый минерал имеет форму куба, кристаллическое строение, окрашен в черный цвет. До недавнего времени использовался для технических целей, но в последние годы нашел применение в создании ювелирных украшений.

3) Создание алмазов в процессе взрыва. Формирование минералов на планете не завершено. В процессе каждого извержения вулкана на поверхности Земли оказывается лава, прошедшая тот же путь, что и магма, рвущаяся из ядра планеты при ее образовании. Создание условий, имитирующих взрыв, позволяет получить твердые, кристально чистые алмазы, которые можно использовать при создании украшений. Для создания алмаза графит предварительно разогревается. В процессе взрыва образуется кристаллическая алмазная крошка.

Готовые алмазы по всем химическим и физическим параметрам, в том числе и по цвету, совпадают с настоящими. Единственным минусом можно считать их небольшой размер.

4) Получение минералов при низкой температуре. Для того чтобы ответить на вопрос о том, как вырастить алмаз, необходимо понимать, что образование кристаллической решетки минерала связано с температурой: чем она выше, тем вероятнее образование камня.

Кольцо с искусственным бриллиантом

Исследования последних лет показали, что важна не только температура, но и металл-катализатор. Последний способен снизить давление и температуру до уровня, исключающего необходимость постройки специальных установок.

В камеру помещают графит, кобальт, никель, железо и растворитель. Между железом и катализатором образуется прослойка, внутри которой при температуре в 600 градусов Цельсия и давлении 1,5 атмосфер вырастает алмаз.

Величина алмаза напрямую связана с размером прослойки. Таким способом удается получить минералы весом до 50 грамм. Используются они исключительно в технических целях.

Добыча алмазов, несомненно, достаточно прибыльный бизнес, который может поддержать экономику любой страны. Но тем не менее, наверняка многим предпринимателям хотелось бы снизить затраты на получение этих драгоценных камней и этим самым еще увеличить доход алмазодобывающей отрасли. А что, если возможно получать алмазы синтетическим способом из графита?

Чтобы ответить на этот вопрос, необходимо разобраться в природе двух материалов – алмаза и графита. Многие еще из уроков химии помнят, что эти два, казалось бы, таких разных материала целиком и полностью состоят из углерода.

Алмаз представляет собой обычно прозрачный кристалл, но может быть и синим, и голубым, и красным, и даже черным. Это самое твердое и прочное вещество на Земле. Такая твердость обусловлена особым строением кристаллической решетки. Она имеет форму тетраэдра, и все атомы углерода находятся на одном расстоянии друг от друга. Графит же темно-серый с металлическим отливом, мягкий и совершенно непрозрачный. Кристаллическая решетка графита расположена слоями, в каждом из которых молекулы собраны в прочные шестиугольники, однако между слоями связь молекул достаточно слабая. То есть, по сути, разница между алмазом и графитом заключается в различном строении кристаллической решетки.

Получение алмаза из графита

Как таковое превращение графита в алмаз возможно. Это доказали еще ученые ХХ века. В 1955 г. был представлен отчет компании General Electric и синтезированы первые алмазы, правда, очень мелкие. Первым осуществил синтез исследователь компании Т. Холл. Для достижения таких успехов было применено оборудование, позволяющее создавать давление в 120 тыс. атмосфер и температуру в 1800°С.

Группой ученых из Allied Chemical Corporation было осуществлено прямое превращение графита в алмаз. Для этого были использованы более экстремальные условия по сравнению с предыдущими методами. Для создания на 1 микросекунду предельного давления в 300 тыс. атмосфер и температуры в 1200°С применялось взрывчатое вещество огромной мощности. В результате в образце графита обнаруживалось несколько мелких частичек алмаза. Данные о результате эксперимента были опубликованы в 1961 г.

Однако это были не все способы получения алмазов из графита. В 1967 г. Р. Уэнторф вырастил первый алмаз на затравке. Скорость роста оказалась достаточно низкой. Самый крупный синтетический алмаз Р. Уэнторфа, изготовленный данным методом, достиг размера в 6 мм и веса в 1 карат (примерно 0,2 г).

Современные методы синтеза алмазов из графита

Современные технологии позволяют получать алмазы из графита несколькими методами. Алмазы синтезируются в условиях, максимально приближенных к природным, а также с использованием катализаторов. Производится наращивание кристаллов алмаза в метановой среде, а мелкую алмазную пыль для производства различных абразивов получают методом взрыва взрывчатых веществ или проволоки большим импульсом тока.

– Onriom

Производство искусственных алмазов требует выполнения нескольких сложных условий. Недавно при помощи компьютерного моделирования учёные смогли в мельчайших деталях воссоздать процесс превращения графита в алмаз.

Подпись к изображению: При помощи новейшего научного метода учёные впервые в точности воспроизвели процесс превращения графита в алмаз.

Переход состоит из нескольких этапов, начиная от образования алмазного «семечка» внутри графита, и заканчивая полной трансформацией в настоящий алмаз под воздействием высокого давления.

Между этими двумя разновидностями естественно формирующегося элементарного углерода (темно-серым графитом и блестящим алмазом) намного больше различий, чем между каждым из них и практически любым другим материалом.

Существенная разница в прочности алмаза и графита связана, в основном, с их кристаллической структурой – кубической в случае с алмазом и гексагональной в случае с графитом.

Это различие и делает алмаз прочнейшим из всех известных материалов, в отличие от относительно мягкого графита. Именно благодаря своей высокой прочности алмазы пользуются спросом не только как драгоценные камни — их используют в промышленности для шлифовки и распиливания особо твердых материалов.

Сложное превращение

Впервые получить алмаз из графита искусственным образом удалось 60 лет назад. Но до производства в промышленных масштабах дело не дошло. Дело в том, что необходимыми условиями для его производства являются высокое давление и высокие температуры, процесс этот очень длительный и требует больших энергетических затрат. Он включает в себя принудительное изменение структуры углерода, изменение расположения его электронов.

Должны сформироваться четыре связи атомов углерода вместо трех, и состояние углерода должно измениться с энергетически «комфортного» до энергетически «некомфортного», плотного состояния. Чтобы это произошло, углерод должен преодолеть сильный энергетический барьер.

Как именно происходит подобная трансформация, и в какой момент углерод становится алмазом — до сих пор наука не могла дать внятного ответа на этот вопрос.

Профессор вычислительных наук Высшей технической школы Цюриха и Университета Лугано Мишель Парринелло и его команда, используя метод компьютерного моделирования, успешно воссоздали процесс трансформации графита в алмаз в виртуальном пространстве.

Упрощение дает ложную картину

В прошлом ученые пытались смоделировать фазу перехода, используя так называемый «метод Кар-Парринелло». С помощью этого метода можно приблизительно определить структуру и энергетическое состояние электронов в каждой позиции в ионе и, таким образом, смоделировать ситуацию с разрывом и последующим формированием новых ионных связей.

Метод 25-летней давности был разработан в процессе совместной работы Парринелло с Роберто Каром. «Однако создание точной модели процесса перехода от графита к алмазу обойдется слишком дорого, если учесть необходимость отслеживать огромное количество атомов», — говорит Парринелло.

Исследователи попытались упростить этот метод: они значительно сократили используемое при моделировании количество атомов. Но, как утверждает Парринелло, при подобном моделировании вся фаза трансформации графита выглядит таким образом, будто происходит мгновенно, как по команде, а не поэтапно.

Совсем другую картину удалось получить при помощи нового, недавно разработанного метода моделирования. Используя суперкомпьютер Швейцарского национального суперкомпьютерного центра, учёные вычислили десятки тысяч конфигураций атомов с плавно переходящим энергетическим состоянием.

Это означает, что конфигурации атомов обладают широким спектром возможных энергетических состояний. После того как ученые интерполировали их энергетическое состояние и использовали полученные данные как базис для моделирования, стало очевидно, что сначала формируется алмазное «семечко», которое затем, под влиянием высокого давления, постепенно изменяет свою гексагональную графитную структуру до кубической.

Моделирование фазы трансформации с помощью новейшего метода позволило сделать ещё одно открытие: структурные дефекты в кристаллической решетке графита уменьшают количество барьеров, которые необходимо преодолеть для образования алмазного «семечка»... Поэтому структурные дефекты могут увеличить скорость протекания процесса преобразования.

Этот метод может быть использован везде, где есть необходимость визуализировать фазовые переходы - подчеркивает Парринелло.

И алмаз, и графит – это разные формы одного и того же элемента – углерода. У мягкого, крошащегося графита и у самого твердого кристалла в мире одна и та же формула – С. Как такое возможно?

Свойства алмаза и графита

Алмазы встречаются в природе в хорошо выраженной кристаллической форме. Это прозрачный и чаще всего бесцветный кристалл, хотя бывают и алмазы, окрашенные в голубой, красный и даже черный цвета. Такое цветовое отступление от правила связано с особенностями природных условий формирования кристалла и наличия в нем примесей. Очищенный и отшлифованный алмаз приобретает особый блеск, который и оценили люди.

Алмазы хорошо отражают свет и, обладая сложной формой, хорошо его преломляют. Это дает знамений блеск и перелив очищенного кристалла. Он является проводником тепла, но по отношению к электричеству является изолятором.

Графит представляет собой антипод алмаза. Это не кристалл, а совокупность тонких пластинок. Он черный с серым отливом. По внешнему виду напоминает сталь с преобладанием чугуна.

Несмотря на стальной вид, на ощупь он жирный, а при использовании оказывается еще и мягким. При малейшем надавливании он крошится, что и привлекает человека, использующего графит в качестве средства запечатления информации на бумаге.

Графит, как и алмаз, является хорошим проводником тепла, но, в отличие от своего собрата по молекулярному строению, хорошо проводит и электричество.

Этих разных представителей полиморфности молекулярного углерода отличает друг от друга только одно – строение молекулярной решетки. Все остальное – лишь следствие главного.

В графите кристаллическая решетка организована по плоскостному принципу. Все его атомы размещены в шестиугольнике, которые находятся в одной плоскости. Поэтому связи между атомами разных шестиугольников такие непрочные, а сам графит слоистый, и его слои плохо связаны друг с другом. Такое строение кристаллической решетки определяет его мягкость и разнообразную полезность, но сам графит при этом разрушается. Однако именно такое строение кристаллической решетки позволяет, используя особые условия и другие вещества, сделать из графита алмаз. Такие же процессы происходят с этим минералом в природе при аналогичных условиях.

Алмазная решетка построена по принципу объемных связей всех с каждым и всех со всеми. Атомы образуют правильный тетраэдр. Атом в каждом тетраэдре окружен другими атомами, каждый из которых образует вершину другого тетраэдра. Получается, что тетраэдров в каждом кусочке алмаза гораздо больше, чем молекул, образующих эти тетраэдры, поскольку каждый из тетраэдров является частью другого тетраэдра. По этой причине алмаз является самым неразрушимым минералом.

Судьба углерода в графите и алмазе

Углерод относится к самым массовым элементам биосферы и всей планеты Земля. Он в тех или иных состояниях присутствует в атмосфере (углекислый газ), в воде (растворенный углекислый газ и иные соединения) и в литосфере. Здесь, в тверди земной, он входит в состав больших залежей угля, нефти, природного газа, торфа и т.п. Но в чистом виде он представлен залежами алмаза и графита.

Больше всего углерода сконцентрировано в живых организмах. Любые организмы строят свое тело из углерода, концентрация которого в живых телах превышает содержание углерода в неживой материи. Мертвые организмы оседают на поверхности литосферы или океана. Там они разлагаются в разных условиях, образуя месторождения, богатые углеродом.

Происхождение чистых залежей алмазов и графита вызывает много споров. Есть мнение, что это бывшие организмы, попавшие в особые условия и минерализовавшиеся наподобие угля. Считается также, что алмазы имеют магматическое происхождение, а графит – метаморфическое. Это означает, что в концентрации алмазов на планете участвуют сложные процессы в недрах земли, где самопроизвольно в присутствии кислорода возникает взрыв и горение. В результате взаимодействия молекул метана и кислорода и возникают кристаллы алмаза. При этих же процессах, но в определенных условиях возможно появление и графита.

Как получить из графита алмаз

Получение при современном уровне развития химии давно не является проблемой. То, что природа делает за миллионы лет, человек может сделать за гораздо более короткий срок. Главное – воспроизвести условия, в которых в природе одна форма чистого углерода переходила в другую, то есть создать высокую температуру и очень высокое давление.

Впервые такие условия были созданы с помощью взрыва. Взрыв – это мгновенное горение под большим давлением. После того как собрали то, что удалось собрать, выяснилось, что в графите появились маленькие алмазы. Такое фрагментарное превращение произошло потому, что взрыв создает большое разнообразие давления и температуры. Там, где создались условия для перехода из графита в алмаз, это и произошло.

Эта неустойчивость процессов сделала взрывы неперспективными для производства алмазов из графита. Ученых это, однако, не остановило, и они с упорством продолжали подвергать графит всяким испытаниям в надежде заставить его стать алмазом. Стабильный результат дало нагревание графитового бруска импульсами до температуры в 2000°С, что дало возможность получить алмазы значимых размеров.

Опыты с высоким давлением дали неожиданные результаты – графит превращался в алмаз, но при уменьшении давления переходил в свое исходное состояние. Стабильно уменьшить расстояние между атомами углерода только с помощью одного давления не удавалось. Тогда стали сочетать давление и высокую температуру. Наконец, удалось выяснить диапазон сочетаний температуры и давления, при котором можно получить кристаллы алмаза. Правда, при этом получался только технический алмаз, использование которого в ювелирном деле было затруднено.

Кроме больших затрат на энергетическое обеспечение процесса перевода графита в алмаз существовала еще одна проблема – при увеличении длительности воздействия высокой температурой начинается графитизация алмаза. Все эти тонкости усложняют промышленное производство алмазов. По этой причине в природе, крайне разрушительная для нее, остается актуальной и прибыльной.

Чтобы получить алмаз, предназначенный для ювелирных целей, стали выращивать кристаллы, используя затравку. Готовый кристалл алмаза подвергался воздействию температуры в 1500°, что стимулировало рост сначала быстрый, а потом медленный. Чем больше кристалл, тем медленнее он рос. Этот эффект сделал интересный опыт лишь опытом, поскольку его производство в промышленных масштабах стало нерентабельным. Не улучшило ситуацию и применение метана в качестве «подкормки» растущего алмаза. При высоких давлении и температуре метан разрушается до углерода и водорода. Этот углерод и является “кормом” для алмаза.

Применение алмаза и графита

Оба минерала широко используются в промышленности.

Алмазы применяют:

  • в электротехнике;
  • приборостроении;
  • радиоэлектронике;
  • на буровых установках
  • в ювелирном деле.

Графит используется при:

  • производстве тиглей и иного огнеупорного оборудования;
  • изготовлении смазочных материалов;
  • изготовлении карандашей;
  • производстве оборудования для электроугольной промышленности.

Несмотря на разнообразие применения как графита, так и алмаза в различных отраслях промышленности, можно смело говорить о большей пользе графита. Алмаз по причине идеальности своей кристаллической решетки инертен. Его можно использовать только как алмаз. Большая часть добываемых в природе алмазов уходит на нужды ювелирной промышленности, поскольку минерал является одним из самых дорогих драгоценных камней, становясь бриллиантом, он стимулирует оборот денег, и это его основное свойство в экономике.

Графит, изъятый из природы, становится не самодостаточной ценностью, а великим тружеником производства. Благодаря своим свойствам он используется и в своем истинном, природном виде, то есть как графит, и в качестве средства, на основе которого могут быть получены новые вещества, например, тот же алмаз.

Чтобы сделать алмаз...

Кто незнаком с алмазом - этим чемпионом в мире кристаллов? Нас восхищает феерическая игра света на гранях отшлифованного алмаза (бриллианта), поражает его непревзойденная твердость. Размер кристаллов обычно невелик (2 - 5 мм), но попадаются и крупные образцы. Самый большой из всех добытых алмазов весил 605 г, или более 3000 карат (карат - 0,2 г).

Можно добавить, что за все времена по 1947 г. было найдено 80 т алмазов (подсчитано, что в месторождениях находят 0,2-0,3 карата алмазов на 1 мг породы).
Итак, алмаз - это драгоценный камень. В 1797 г. С. Теннант определил его химический состав. Оказалось, что он, так же как и графит, состоит из чистого углерода.
Мы знаем, что некоторые химические элементы могут существовать в виде двух и более простых веществ. Так, атомы кислорода способны соединяться по два (газ кислород) и по три (газ озон), фосфор дает двух- и четырехатомные молекулы. Это происходит потому, что атомы образуют молекулы разными способами (аллотропия). В графите атомы углерода соединены в шестиугольники, которые слоями лежат друг на друге, причем расстояние между слоями равно 3,4 А. В алмазе те же атомы углерода расположены в углах тетраэдра, длина ребра которого равна 1,54 А (рис. 1). Какие же условия необходимы, чтобы атомы углерода изменили свое расположение и графит превратился в алмаз?
Алмазы образуются в толще Земли при высоких давлениях и температурах. Там они кристаллизуются, а затем в результате извержений порода, в которой они находятся, выбрасывается к поверхности Земли. Можно ли этот процесс повторить искусственно?
Ученые установили, что если нагреть алмаз в среде инертного газа до высокой температуры, он превратится в графит. Температура этого перехода зависит от давления. Чем выше давление, тем при большей температуре устойчив алмаз.
Оказалось, что алмаз устойчив только при высоких давлениях, начиная от 10 ООО атм при комнатной температуре и до сотен тысяч атмосфер при тысячах градусов.
Много лет изобретатели, ученые и просто охотники до наживы проводили сотни экспериментов, пытаясь превратить графит в алмаз, но безуспешно.
Теперь нам ясно, в чем дело. Оказалось, что при низких температурах скорость перехода графита в алмаз так мала, что нужны миллионы лет, чтобы получить хоть крупицу алмаза. По-видимому, успеха можно было ждать только при высоких температурах. Но при этом нужны были и очень высокие давления.
Теперь, прежде чем продолжить рассказ об алмазе, вспомним, что такое давление.
Давление - это сила, приложенная к единице площади. Вес человека, распределенный на площадь его подошв, - это давление. Сила, с которой нажимает наперсток, приложенная к площади кончика иглы,- это давление. Вычислим его. Предположим, что диаметр кончика иглы равен 0,01 мм, или 10~3 см (а это еще тупая.игла). Тогда площадь кончика равна 0,785 10~6 см2. Если наперсток нажимает на иглу с силой всего в 1 г, то давление под кончиком будет 1275 кг/см2, или 1275 технических атмосфер. Жало комара еще тоньше, чем игла, и понятно, почему оно легко прокалывает кожу.
А что представляет собой атмосферное давление? Это вес воздуха, приходящийся на единицу площади. На уровне моря на 1 см2 поверхности давит сила около 1 кгс. Отсюда и пошло обозначение: техническая атмосфера - это 1 кгс/см2. Под водой давление
возрастает на каждые 10 м глубины приблизительно на одну атмосферу. В толще Земли давление растет еще быстрее. На глубине 150-200 м оно уже достигает десятков тысяч атмосфер, а в центре Земли - нескольких миллионов.
А вообще каков предел величины давления? Нижний предел - это абсолютный вакуум. В пространстве, где нет ни одной частицы вещества, давление равно нулю. А верхний предел?
Попробуем представить себе ящик, стенки которого могут выдержать любое давление. Начнем нагнетать в него газ. Молекулам в ящике станет теснее. При некоторой плотности газ превратится в жидкость. Если продолжать накачивание, количество молекул в ящике станет еще больше, расстояние между ними будет сокращаться. Молекулам будет все труднее двигаться в ящике, возрастет вязкость газа, и при давлении около двадцати тысяч атмосфер он затвердеет. Продолжим сжатие. При давлениях в десятки тысяч атмосфер молекулы подойдут так близко друг к другу, что это начнет мешать электронам двигаться вокруг ядер. Появятся изменения в электронных оболочках.
Более половины химических элементов устроено так, что на их внутренних электронных орбитах есть свободные места. При дальнейшем сжатии (до сотен тысяч атмосфер) электроны в таких атомах начнут сдвигаться на свободные места поближе к ядру. При этом обычные химические свойства элементов настолько изменяются, что можно даже будет построить новую периодическую систему элементов.
При давлениях в миллионы и более атмосфер может оказаться, что электронам удобнее двигаться не вокруг отдельных ядер, а в виде электронного газа возле всех ядер: вещества переходят в металлическое состояние.
В настоящее время уже умеют сжимать до очень высоких давлений и газы, и жидкости, и твердые тела. Самые высокие давления достигнуты при сжатии твердых тел в аппаратах, построенных по принципу молота и наковальни (ведь обычные молот и наковальня остаются при ковке целыми, а кусок железа меняет свою форму). Из очень твердого сплава изготовляют две наковальни и помещают их между плитами мощного гидравлического пресса (рис. 2). Между наковальнями находится тонкий слои исследуемого вещества.

При сжатии плит в веществе развивается огромное давление. Если диаметр наковальни равен 1,6 см, то, сжав плиты с силой 1000 т, можно достичь давления в 0,5 млн. атм (вспомним наперсток и иголку).

Используя такой принцип и создали аппараты, в которых были впервые получены алмазы (рис. 3). Он состоит из многослойного кольцевого сосуда. Внутренний слой сделан из сверхтвердого сплава. На этот слой надеты пояса (бандажи) из твердой стали, мягкой стали, меди и пояс, в котором циркулирует охлаждающая вода. Такое чередование материалов уменьшает опасность разлета осколков, если аппарат разрушится. Сверху и снизу аппарат закрыт многослойными крышками. Внутренние части крышек - это штампы из сверхтвердого сплава. На конусные части штампов надевают прокладки из пирофиллита (минерал - алюмосиликат железа). Он обладает свойством становиться эластичным при высоких температурах и давлениях. Внутрь кольцевого сосуда вставляют контейнер из пирофиллита, в котором находится графитовый стержень и катализатор. При нагревании катализатор плавится, графит растворяется в расплаве и его перестройка в алмаз происходит легче.
Все три части аппарата собирают, вставляют в гидравлический пресс и начинают увеличивать давление. Пирофиллит заполняет все неплотности между штампами и кольцевым сосудом и предотвращает падение давления.
Чтобы нагреть содержимое контейнера, через штампы пропускают ток большой мощности. Штампы изолированы от пресса и соединены металлическими прокладками с графитовым стержнем в контейнере. Ток, проходящий через эту электрическую цепь, может нагреть графит до 3000°.
Проходят десятки минут... Процесс закончен. Внутри контейнера уже не графит, а кристаллики алмаза. Аппарат охлаждают, снижают давление и из контейнера вынимают массу, в которой находится алмаз.
Почему же алмаз, вынутый из аппарата, не превращается опять в графит? Ведь он в обычных условиях неустойчив? Дело снова в скорости процесса: он так замедлен, что мы не можем его заметить.
Итак, алмаз получен. Это мелкие кристаллы, которые выросли в течение минут, а не веков, понадобившихся для роста крупных кристаллов природного алмаза. Их нельзя использовать для изготовления украшений. Но они очень нужны.
Алмаз - самое твердое вещество. Поэтому из него изготовляют резцы, сверла, фрезы, шлифовальные круги, буровые коронки, фильеры для волочения проволоки и т. д. Алмазные инструменты обрабатывают самые твердые сплавы с необычайной скоростью и чистотой. Техника и промышленность очень нуждаются в алмазах. И сейчас налажено производство искусственных алмазов для технических целей.
С помощью высоких давлений удалось создать боразон - кристаллический нитрид бора, по твердости сравнимый с алмазом и применяющийся для обработки сверхтвердых веществ и сплавов. Искусственный кварц, который также получают под давлением, нашел применение в радиотехнике.
Что же касается ювелирных алмазов, то придет и их время. Для этого нужно создать аппараты, в которых можно будет поддерживать высокие давления и температуры неограниченно долго, чтобы создать условия для медленного роста крупных кристаллов. Но это дело будущего.

Д.С. Циклис

Размещение фотографий и цитирование статей с нашего сайта на других ресурсах разрешается при условии указания ссылки на первоисточник и фотографии.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама