THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.


Потребность в приспособлениях, позволяющих ускорить процесс счёта, появилась у человека ещё тысячи лет назад. Тогда для этого использовались простейшие средства, вроде счётных палочек. Позже появился абак, больше известный нам как счёты. Он позволял выполнять только самые простейшие арифметические действия. С тех пор многое изменилось. Практически у каждого дома стоит компьютер, а в кармане лежит смартфон. Всё это можно объединить под общим названием «Компьютерные технологии» или «Вычислительная техника». В этой статье вы узнаете немного больше об истории её развития.

1623 год. Вильгельм Шиккард думает: «А почему бы мне не изобрести первый арифмометр?» И он его изобретает. У него получается механический прибор, способный выполнять основные арифметические действия (сложение, умножение, деление и вычитание) и работающий с помощью зубчатых колёс и цилиндров.

1703 год. Готфрид Вильгельм Лейбниц описывает двоичную систему счисления в своём трактате «Explication de l’Arithmtique Binaire», что на русский язык переводится как «Объяснение Двоичной Арифметики». Реализация использующих её компьютеров гораздо проще, и сам Лейбниц об этом знал. Ещё в 1679 году он создал чертёж двоичной вычислительной машины. Но на практике первое подобное устройство появилось только в середине XX века.

1804 год. Впервые появляются перфорированные карты (перфокарты). Их использование не прекратилось и в 1970-х годах. Они представляют собой листы тонкого картона, в некоторых местах которого имеются отверстия. Информация записывалась различными последовательностями этих отверстий.

1820 год. Чарльз Ксавьер Томас (да, почти как профессор Икс) выпускает арифмометр Томаса, вошедший в историю как первое устройство для счёта, выпускаемое серийно.

1835 год. Чарльз Бэббидж хочет изобрести свою собственную аналитическую машину и описывает её. Изначально задачей прибора должно было стать вычисление логарифмических таблиц с высокой точностью, но позже Бэббидж передумал. Теперь его мечтой стала машина общего назначения. На то время создание подобного аппарата было вполне реально, но работать с Бэббиджем оказалось непросто из-за его характера. В результате разногласий проект был закрыт.

1845 год. Израиль Штаффель создаёт первый в истории прибор, способный извлекать из чисел квадратные корни.

1905 год. Перси Лудгерт издаёт проект программируемого механического компьютера.

1936 год. Конрад Цузе решает создать свою вычислительную машину. Он называет его Z1.

1941 год. Конрад Цузе выпускает Z3 - первый в мире компьютер, управляемый программой. Впоследствии было выпущено ещё несколько десятков аппаратов серии Z.

1961 год. Выпуск ANITA Mark VII - первого в мире полностью электронного калькулятора.

Пара слов о поколениях компьютеров.

1 поколение. Это так называемые ламповые компьютеры. Они работают с помощью электронных ламп. Первое подобное устройство было создано в середине XX века.

2 поколение. Все пользовались компьютерами 1 поколения, пока вдруг в 1947 году Уолтер Браттейн и Джон Бардин не изобрели очень важную вещь - транзистор. Так появилось второе поколения компьютеров. Они потребляли гораздо меньше энергии, а их производительность была больше. Эти устройства были распространены в 50-х-60-х годах XX века, пока в 1958 году не была изобретена интегральная схема.

3 поколение. Работа этих компьютеров была основана на интегральных схемах. Каждая такая схема содержит сотни миллионов транзисторов. Впрочем, создание третьего поколения не остановило выпуск компьютеров второго поколения.

4 поколение. В 1969 году Тэду Хоффу в голову пришла идея заменить множество интегральных схем одним маленьким устройством. Оно было позже названо микросхемой. Благодаря этому стало возможным создавать совсем маленькие микрокомпьютеры. Первое такое устройство было выпущено компанией Intel. А в 80-х годах микропроцессоры и микрокомпьютеры оказались самыми распространёнными. Мы и сейчас пользуемся ими.

Это была краткая история развития компьютерных технологий и вычислительной техники. Надеюсь, мне удалось Вас заинтересовать. До свидания!

Ранние приспособления и устройства для счёта

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы , которые стали, таким образом, одним из первых устройств для количественного определения массы .

Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм , обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

«Считающие часы» Вильгельма Шиккарда

За этим последовали машины Блеза Паскаля («Паскалина », 1642 г.) и Готфрида Вильгельма Лейбница .

ANITA Mark VIII, 1961 год

В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс» , выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве .

Появление аналоговых вычислителей в предвоенные годы

Основная статья: История аналоговых вычислительных машин

Дифференциальный анализатор, Кембридж, 1938 год

Первые электромеханические цифровые компьютеры

Z-серия Конрада Цузе

Репродукция компьютера Zuse Z1 в Музее техники, Берлин

Цузе и его компанией были построены и другие компьютеры, название каждого из которых начиналось с заглавной буквы Z. Наиболее известны машины Z11, продававшийся предприятиям оптической промышленности и университетам, и Z22 - первый компьютер с памятью на магнитных носителях.

Британский Colossus

В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработки компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

Компьютер второго поколения IBM 1401, выпускавшийся в начале 1960-х, занял около трети мирового рынка компьютеров, было продано более 10 000 таких машин.

Применение полупроводников позволило улучшить не только центральный процессор , но и периферийные устройства. Второе поколения устройств хранения данных позволяло сохранять уже десятки миллионов символов и цифр. Появилось разделение на жёстко закреплённые (fixed ) устройства хранения, связанные с процессором высокоскоростным каналом передачи данных, и сменные (removable ) устройства. Замена кассеты дисков в сменном устройстве требовала лишь несколько секунд. Хотя ёмкость сменных носителей была обычно ниже, но их заменяемость давала возможность сохранения практически неограниченного объёма данных. Магнитная лента обычно применялось для архивирования данных, поскольку предоставляла больший объём при меньшей стоимости.

Во многих машинах второго поколения функции общения с периферийными устройствами делегировались специализированным сопроцессорам . Например, в то время как периферийный процессор выполняет чтение или пробивку перфокарт, основной процессор выполняет вычисления или ветвления по программе. Одна шина данных переносит данные между памятью и процессором в ходе цикла выборки и исполнения инструкций, и обычно другие шины данных обслуживают периферийные устройства. На PDP-1 цикл обращения к памяти занимал 5 микросекунд; большинство инструкций требовали 10 микросекунд: 5 на выборку инструкции и ещё 5 на выборку операнда.

Лучшей отечественной ЭВМ 2-го поколения считается БЭСМ-6 , созданная в 1966 году .

1960-е и далее: третье и последующие поколения

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем , которые независимо друг от друга сделали лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).

Появление микропроцессоров привело к разработке микрокомпьютеров - небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк , один из основателей Apple Computer , стал известен как разработчик первого массового домашнего компьютера , а позже - первого персонального компьютера . Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.

В СССР и России

1940-е

В 1948 году под началом доктора физико-математических наук С. А. Лебедева в Киеве начинаются работы по созданию МЭСМ (малой электронной счетной машины). В октябре 1951 года она вступила в эксплуатацию.

В конце 1948 года сотрудники Энергетического института им. Крижижановского И. С. Брук и Б. И. Рамеев получают авторское свидетельство на ЭВМ с общей шиной , а в 1950-1951 гг. создают её. В этой машине впервые в мире вместо электронных ламп используются полупроводниковые (купроксные) диоды . С 1948 г. Брук вёл работы по электронным ЦВМ и управлению с применением средств вычислительной техники.

В конце 1950-х разрабатываются принципы параллелизма вычислений (А. И. Китов и др.), на основе которых была построена одна из самых скоростных ЭВМ того времени - М-100 (для военных целей).

В июле 1961 года в СССР запустили в серию первую полупроводниковую универсальную управляющую машину «Днепр » (до этого были только специализированные полупроводниковые машины). Еще до начала серийного выпуска с ней проводились эксперименты по управлению сложными технологическими процессами на

Стремительное развитие цифровой вычислительной техники (ВТ) и становление науки о принципах ее построения и проектирования началось в 40-х годах XX века, когда технической базой ВТ стала электроника и микроэлектроника, а основой для развития архитектуры компьютеров (называемых ранее ЭВМ) – достижения в области искусственного интеллекта.

До этого времени в течение почти 500 лет ВТ сводилась к простейшим устройствам для выполнения арифметических операций над числами. Основой практически всех изобретенных за 5 столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления. Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе таких колес принадлежит Леонардо да Винчи.

Первым реально осуществленным механическим цифровым вычислительным устройством стала "Паскалина" великого французского ученого Блеза Паскаля, которая представляла собой 6-ти (или 8-ми) разрядное устройство, на зубчатых колесах, рассчитанное на суммирование и вычитание десятичных чисел (1642 г.).

Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление.

В конце XVIII века во Франции произошли два события, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники. К таким событиям относятся:

 изобретение Жозефом Жакардом программного управления ткацким станком с помощью перфокарт;

 разработка Гаспаром де Прони, технологии вычислений, разделившей численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой.

Указанные новшества позже были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств ВТ – переход от ручного к автоматическому выполнению вычислений по составленной программе . Им был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.). Машина состояла из пяти устройств: арифметическое (АУ); запоминающее (ЗУ); управления (УУ); ввода (УВВ); вывода (УВ).

Именно из таких устройств и состояли первые ЭВМ, появившиеся спустя 100 лет. АУ строилось на основе зубчатых колес, на них же предлагалось реализовать ЗУ (на тысячи 50-разрядных чисел). Для ввода данных и программы использовались перфокарты. Предполагаемая скорость вычислений - сложение и вычитание за 1 сек, умножение и деление - за 1 мин. Помимо арифметических операций имелась команда условного перехода.

Следует отметить, что хотя и были созданы отдельные узлы машины, всю машину из-за ее громоздкости создать не удалось. Только зубчатых колес для нее понадобилось бы более 50 000. Изобретатель намечал использовать паровую машину для приведения в действие своей аналитической машины.

В 1870 г. (за год до смерти Беббиджа) английский математик Джевонс сконструировал первую в мире "логическую машину", позволяющую механизировать простейшие логические выводы.

Создателями логических машин в дореволюционной России стали Павел Дмитриевич Хрущев (1849-1909) и Александр Николаевич Щукарев (1884-1936), работавшие в учебных заведениях Украины.

Гениальную идею Беббиджа осуществил американский ученый Говард Ай­кен, создавший в 1944 г. первый в США релейно-механический компьютер. Ее основные блоки – арифметики и памяти – были исполнены на зубчатых колесах. Если Беббидж намного опередил свое время, то Айкен, использовав все те же зубчатые колеса, в техническом плане при реализации идеи Беббиджа использовал устаревшие решения.

Следует отметить, что десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать цифровую вычислительную машину с программным управлением. В этой машине впервые в мире была использована двоичная система исчисления. В 1937 г. машина Z1 произвела первые вычисления. Она была двоичной 22-х разрядной с плавающей запятой с памятью на 64 числа, и работала на чисто механической (рычажной) основе.

В том же 1937 г., когда заработала первая в мире механическая двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированного компьютера, впервые в мире применив электронные лампы (300 ламп).

В 1942-43 годах в Англии была создана (с участием Алана Тьюринга) вычислительная машина "Колоссус". Эта машина, состоящая из 2000 электронных ламп, предназначалась для расшифровки радиограмм германского вермахта. Поскольку работы Цузе и Тьюринга были секретными, о них в то время знали немногие и они не вызвали какого-либо резонанса в мире.

Только в 1946 г. появилась информация об ЭВМ "ЭНИАК" (электронный цифровой интегратор и компьютер), созданной в США Д. Мочли и П. Эккертом, с применением электронной техники. В машине использовалось 18 тысяч электронных ламп, и она выполняла около 3-х тыс. операций в сек. Однако, машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти.

Почти одновременно, в 1949-52 гг. ученые Англии, Советского Союза и США (Морис Уилкс, ЭВМ "ЭДСАК", 1949 г.; Сергей Лебедев, ЭВМ "МЭСМ", 1951 г.; Исаак Брук, ЭВМ "М1", 1952 г.; Джон Мочли и Преспер Эккерт, Джон фон Нейман ЭВМ "ЭДВАК", 1952 г.), создали ЭВМ с хранимой в памяти программой.

В общем случае выделяют пять поколений ЭВМ.

Первое поколение (1945-1954 ) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали для себя отдельных зданий.

Основоположниками компьютерной науки по праву считаются Клод Шеннон – создатель теории информации, Алан Тьюринг – математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, – кибернетика – наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

Во втором поколении (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Но главные достижения этой эпохи принадлежат к области программ. Во втором поколении впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.

При этом расширялась сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике, поскольку компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже начали компьютеризовать свою бухгалтерию, предвосхищая этот процесс на двадцать лет.

В третьем поколении (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной.

В эти годы производство компьютеров приобретает промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов.

В 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера.

На рубеже 60-х и 70-х годов двадцатого столетия (1969 г) зародилась первая глобальная компьютерная сеть ARPA, прототип современного Интернета. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Четвертое поколение (1975 – 1985) характеризуется все меньшим количеством принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Самая главная новация четвертого поколения – это появление в начале 80-х годов персональных компьютеров. Благодаря персональным компьютерам вычислительная техника становится по-настоящему массовой и общедоступной. Несмотря на то, что персональные и миникомпьютеры по-прежнему в вычислительных мощностях отстают от больших машин, львиная доля новшеств, таких как графический пользовательский интерфейс, новые периферийные устройства, глобальные сети, связана появлением и развитием именно этой техники.

Большие компьютеры и суперкомпьютеры, конечно же, продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

Некоторые характеристики вычислительной техники четырех поколений приведены в табл. 1.1.

Таблица 1.1

Поколения вычислительной техники

Поколение

Основной элемент

Эл. лампа

Транзистор

Интегральная схема

Большая интегральная схема (микропроцессор)

Количество ЭВМ

в мире (шт.)

Десятки тысяч

Миллионы

Размеры ЭВМ

Значительно меньше

микроЭВМ

Быстродействие (условное)операций/ сек

Несколько единиц

Несколько десятков

Несколько тысяч

Несколько десятков тысяч

Носитель информации

Перфокарта,

Перфолента

Магнитная

Пятое поколение (1986 до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий, должны удовлетворять следующим качественно новым функциональным требованиям:

 обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков;

 обеспечить возможность обучаемости, ассоциативных построений и логических выводов;

 упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;

 улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;

 обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации.

В настоящее время ведутся интенсивные работы по созданию оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем






























































































































































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  1. познакомить с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями
  2. дать представление о связи развития ЭВМ с развитием человеческого общества,
  3. познакомить с основными особенностями ЭВМ разных поколений.
  4. Развитие познавательного интереса, умение использовать дополнительную литературу

Тип урока: изучение нового материала

Вид: урок-лекция

Программно-дидактическое обеспечение: ПК, слайды презентации с изображением основных устройств, портретов изобретателей и ученых.

План урока:

  1. Организационный момент
  2. Актуализация новых знаний
  3. Предыстория компьютеров
  4. Поколения ЭВМ (компьютеров)
  5. Будущее компьютеров
  6. Закрепление новых знаний
  7. Подведение итогов урока
  8. Домашнее задание

1. Организационный момент

Задача этапа : Подготовить учащихся к работе на уроке. (Проверить готовность класса к уроку, наличие школьных необходимых принадлежностей, посещаемость)

2. Актуализация новых знаний

Задача этапа : Подготовка учащихся к активному усвоению новых знаний, обеспечить мотивацию и принятие учащимися цели учебно – познавательной деятельности. Постановка целей урока.

Здравствуйте! Как вы думаете, какие технические изобретения особенно изменили способы труда человека?

(Ученики высказывают свои мнения по данному вопросу, по необходимости учитель их корректирует)

- Вы правы, действительно, основным техническим устройством, повлиявшим на труд человека, является изобретение компьютеров - электронно – вычислительных машин. Сегодня на уроке, мы с вами узнаем, какие вычислительные устройства предшествовали появлению компьютеров, как изменялись сами компьютеры, последовательность становления компьютера, когда машина предназначенная просто для счёта стала сложным техническим устройством. Тема нашего урока: «История вычислительной техники. Поколения компьютеров». Цель нашего урока: познакомиться с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями познакомиться с основными особенностями ЭВМ разных поколений.

На уроке мы будем работать с помощью мультимедийной презентации, состоящей из 4-х разделов «Предыстория компьютеров», «Поколения компьютеров», «Галерея учёных», «Компьютерный словарь». В каждом разделе есть подраздел «Проверь себя» - это тест, в котором вы сразу узнаете результат.

3. Предыстория компьютеров

Обратить внимание учеников, что ЭВМ – это электронно-вычислительная машина, другое название «компьютер» или «computer» произошло от английского глагола «compute» – вычислять, поэтому слово «компьютер» можно перевести как «вычислитель». То есть и в слове ЭВМ и в слове компьютер главный смысл это вычисления. Хотя мы с вами хорошо знаем, что современные ЭВМ позволяют не только вычислять, но и создавать и обрабатывать тексты, рисунки, видео, звук. Заглянем в историю…

(параллельно оформляем в тетради таблицу «Предыстория компьютеров»)

«Предыстория компьютеров»

Древний человек счетом овладел раньше, чем письменностью. В качестве первого помощника в счете человек избрал свои пальцы. Именно наличие десяти пальцев легло в основу десятичной системы счисления. В разных странах говорят и пишут на разных языках, а считают одинаково. В 5-ом веке до н.э. греки и египтяне использовали для счета – АБАК – устройство, похожее на русские счеты.

Абак – греческое слово и переводится как счетная доска. Идея его устройства заключается в наличии специального вычислительного поля, где по определенным правилам перемещают счетные элементы. Действительно первоначально абак представлял собой доску, покрытую пылью или песком. На ней можно было чертить линии и перекладывать камешки. В Древней Греции абак служил преимущественно для выполнения денежных расчетов. В левой части подсчитывались крупные денежные единицы, а в правой – мелочь. Счет велся в двоично-пятеричной системе счислении. На такой доске было легко складывать и вычитать, добавляя или убирая камешки и перенося их из разряда в разряд.

Придя в Древний Рим абак, изменился внешне. Римляне стали изготавливать его из бронзы, слоновой кости или цветного стекла. На доске присутствовали два ряда прорезей, по которым можно было передвигать косточки. Абак превратился в настоящий счетный прибор, позволяющий представлять даже дроби, и был значительно удобнее греческого. Римляне называли это устройство calculare – «камешки». Отсюда произошел латинский глагол calculare – «вычислять», а от него – русское слово «калькулятор».

После падения Римской империи произошел упадок науки и культуры и абак был закрыт на некоторое время. Возродился он и распространился по Европе только в X веке. Абаком пользовались купцы, менялы, ремесленники. Даже спустя шесть столетий абак оставался важнейшим инструментом для выполнения вычислений.

Естественно, что в течение такого большого промежутка времени абак менял свой внешний вид и в XLL-XLLLвв.он приобрел форму так называемого счета на линиях, так и между ними. Такая форма счета в некоторых европейских странах сохранялась до конца XVLLLв. и лишь затем окончательно уступила место вычислениям на бумаге.

В Китае абак был известен с LV века до нашей эры. На специальной доске выкладывались счетные палочки. Постепенно их сменили разноцветные фишки, а в V веке появились китайские счеты – суан-пан. Они представляли собой раму с двумя рядами нанизанных на прутики косточек. На каждом прутике их было по семь. Из Китая суан-пан пришел в Японию. Произошло это в XVL веке и устройство получило название «соробан».

В Росси счеты появились в то же время, что и в Японии. Но русские счеты были изобретены самостоятельно, что доказывают следующие факторы. Во-первых, русские счеты очень сильно отличаются от китайских. Во-вторых, это изобретение имеет свою историю.

В России был распространен «счет костьми». Он был близок европейскому счету на линиях, но писцы использовали вместо жетонов плодовые косточки. В XVL возник дощаной счет, первый вариант русских счетов. Такие счеты хранятся сейчас в Историческом музе в Москве.

Счеты в России использовались почти 300 лет и сменили их только дешевые карманные калькуляторы.

Первое в мире автоматическое устройство, которое могло выполнять сложение, было создано на базе механических часов, и разработал его в 1623 году Вильгельм Шикард, профессор кафедры восточных языков в одном из университетов Германии. Но неоценимый вклад в развитие устройств помогающих выполнять вычисления, безусловно внесли Блез Паскаль, Годфрид Лейбниц и Чарльз Беббидж.

В 1642 году один из крупнейших ученых в истории человечества – французский математик, физик, философ и богослов Блез Паскаль изобрел и изготовил механическое устройство для складывания и вычитания чисел – АРИФМОМЕТР. ? Как вы думаете, из какого материала был сделан первый в истории арифмометр? (дерево).

Главная идея конструкции будущей машины была сформирована – автоматический перенос разряда. «Каждое колесо… некоторого разряда, совершая движение на десять арифметических цифр, заставляет двигаться следующее только на одну цифру» - эта формула изобретения утверждала приоритет Блеза Паскаля в изобретении и закрепила за ним право производить и продавать машины.

Машина Паскаля осуществляла сложение чисел на специальных дисках - колесиках. Десятичные цифры пятизначного числа задавались поворотами дисков, на которые были нанесены цифровые деления. Результат читался в окошечках. Диски имели один удлиненный зуб, чтобы можно было учесть перенос в следующий разряд.

Исходные числа задавались поворотами наборных колес, вращение ручки приводило в движение различные шестерни и валики, в итоге специальные колеса с цифрами показывали результат выполнения сложения или вычитания.

Паскаль был одним из величайших гениев человечества. Он был математиком, физиком, механиком, изобретателем, писателем. Его имя носят теоремы математики и законы физики. В физике есть единица измерения давления Паскаль. В информатике его имя носит один из самых популярных языков программирования.

В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц изобрел и изготовил арифмометр, который мог не только складывать и вычитать числа, но и умножать и делить. Скудость, примитивность первых вычислительных аппаратов не помешала Паскалю и Лейбницу высказать ряд интересных идей о роли вычислительной техники в будущем. Лейбниц писал о машинах, которые будут работать не только с числами, но и сос словами, понятиями, формулами, могли выполнять логические операции. Эта идея большинству современников Лейбница казалась абсурдом. В 18 веке взгляды Лейбница были осмеяны великим английским сатириком Дж.Свифтом, автором известного романа «Путешествия Гулливера».

Лишь в 20-ом веке стала понятна значительность идей Паскаля и Лейбница.

Наряду с устройствами для вычислений развивались и механизмы для АВТОМАТИЧЕСКОЙ РАБОТЫ ПО ЗАДАННОЙ ПРОГРАММЕ (музыкальные автоматы, часы с боем, ткацкие станки Жаккарда).

В начале 19-го века английский математик Чарльз Беббидж, занимавшийся составлением таблиц для навигации, разработал ПРОЕКТ вычислительной «аналитической» машины, в основе которого лежал ПРИНЦИП ПРОГРАММНОГО УПРАВЛЕНИЯ (ППУ). Новаторская мысль Беббиджа была подхвачена и развита его ученицей Адой Лавлейс, дочерью поэта Джорджа Байрона – которая стала первой программисткой в мире. Однако практическая реализация проекта Беббиджа была невозможной из-за недостаточного развития промышленности и техники.

Основные элементы машины Беббиджа, присущие современному компьютеру:

  1. Склад – устройство, где хранятся исходные числа и промежуточные результаты. В современно компьютере это память.
  2. Фабрика – арифметическое устройство, в котором осуществляются операции над числами, взятые из Склада. В современном компьютере это Процессор.
  3. Блоки ввода исходных данных – устройство ввода.
  4. Печать результатов – устройство вывода.

Архитектура машины практически соответствует архитектуре современных ЭВМ, а команды, которые выполняла аналитическая машина, в основном включают все команды процессора.

Интересным историческим фактом является то, что первую программу для аналитической машины написал Ада Августа Лавлейс – дочь великого английского поэта Джорджа Байрона. Именно Беббидж заразил ее идеей создания вычислительной машины.

Идея программирования механических устройств с помощь перфокарты впервые была реализована в 1804 году в ткацком станке. Впервые применили их конструкторы ткацких станков. Преуспел в этом дел лондонский ткач Жозеф Мари Жаккард. В 1801 году он создал автоматический ткацкий станок, управляемый перфокартами.

Нить поднималась или опускалась при каждом ходе челнока в зависимости от того, есть отверстие или нет. Поперечная нить могла обходить каждую продольную той Ии иной стороны в зависимости от программы на перфокарте, создавая тем самым затейливый узор из переплетенных нитей. Такое плетение получило название «жаккард» и считается одним из самых сложных и запутанных плетений. Такой ткацкий станок, работающий по программе, был первым массовым промышленным устройством и считается одним из самых совершенных машин, когда-либо созданных человеком.

Идея записи программы на перфокарте пришла в голову и первой программистке Аде Августе Лавлейс. Именно она предложила использовать перфорированные карты в аналитической машине Беббиджа. В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цвета и листья».

Герман Холлерит также использовал в своей машине перфокарты для записи и обработки информации. Перфокарты использовались и в компьютерах первого поколения.

До 40-х годов двадцатого века вычислительная техника представлялась арифмометрами, которые из механических стали электрическими, где электромагнитные реле затрачивали на умножение чисел несколько секунд, которые работали точно по тем же принципам, как и арифмометры Паскаля и Лейбница. Кроме того, они были очень ненадежны, часто ломались. Интересно, что однажды причиной поломки электрического арифмометра оказался мотылек, застрявший в реле, по-английски «мотылек, жук» – bug, отсюда появилось понятие «жучок» как неполадка в ЭВМ.

Герман Холлерит родился 29 февраля 1860 года в американском городе Буффало в семье немецких эмигрантов. Герману легко давались математика и естественные науки, и в 15 лет он поступил в Горную школу при Колумбийском университете. На способного юношу обратил внимание профессор того же университета и пригласил его после окончания школы в возглавляемое им национальное бюро по переписи населения. Перепись населения производилась каждые десять лет. Население постоянно росло, и ее численность в США к тому времени составляло около 50 миллионов человек. Заполнить на каждого человека карточку вручную, а затем подсчитать и обработать результаты, было практически невозможно. Этот процесс затянулся на несколько лет, почти до следующей переписи. Необходимо было найти выход из этой ситуации. Герману Холлериту идею механизировать этот процесс подсказал доктор Джон Биллингс, возглавлявший департамент сводных данных. Он предложил использовать для записи информации перфокарты. Свою машину Холлерит назвал табулятором и в 1887 году он был опробован в Балтиморе. Результаты оказались положительными, и эксперимент повторили в Сент-Луисе. Выигрыш во времени был почти десятикратным. Правительство США сразу же заключило с Холлеритом контракт на поставку табуляторов, и уже в 1890 году перепись населения прошла с использованием машин. Обработка результатов заняла менее двух лет и сэкономила 5 миллионов долларов. Система Холлерита не только обеспечивала высокую скорость, но и позволяла сравнить статистические данные по самым разным параметрам. Холлерит разработал удобный клавишный перфоратор, позволяющий пробивать около 100 отверстий в минуту одновременно на нескольких картах, автоматизировал процедур подачи и сортировки перфокарт. Сортировку осуществляло устройство в виде набора ящиков с крышками. Перфокарты продвигались по своеобразному конвейеру. С одной стороны карты находились считывающие штыри на пружинках, с другой – резервуар с ртутью. Когда штырь попадал в отверстие на перфокарте, то благодаря ртути, находящейся на другой стороне, замыкал электрическую цепь. Крышка соответствующего ящика открывалась и туда попадала перфокарта. Табулятор использовали для переписи населении в нескольких странах.

В 1896 году герма Холлерит сновал компанию Tabulating Machine Company (TMC) и его машины применялись повсюду – и на крупных промышленных предприятиях и в обычных фирмах. И в 1900 году табулятор использовался для переписи населения. переименовывает фирму в IBM (International Business Machines).

4. Поколения ЭВМ (компьютеров)

(параллельно оформляем записи в тетради и таблицу «Поколения ЭВМ (компьютеров)»)

ПОКОЛЕНИЯ ЭВМ
период Элементная база Быстро-действие (оп/сек.) Носители информации программы применение Примеры ЭВМ
I
II
III
IV
V

I поколение ЭВМ: В 30-х годах 20-го века в развитии физики произошел прорыв, коренной переворот. В вычислительных машинах стали использоваться уже не колеса, валики и реле, а вакуумные электронные лампы. Переход от электромеханических элементов к электронным сразу увеличил быстродействие машин в сотни раз. Первая действующая ЭВМ была построена в США в 1945 году, в университете штата Пенсильвания учеными Эккертом и Моучли и называлась ЭНИАК. Эта машина была построена по заказу министерства обороны США для средств ПВО, для автоматизации управления. Чтобы правильно рассчитать траекторию и скорость движения снаряда для поражения воздушной цели, надо было решить систему из 6-ти дифференциальных уравнений. Эту задачу и должна была решать первая ЭВМ. Первая ЭВМ занимала два этажа одного здания, весила 30 тонн и состояла из десятков тысяч электронных ламп, которые соединялись проводами, общая протяженность которых составляла 10 тысяч км. Когда ЭВМ ЭНИАК работала, электричество в городке отключалась, так много электричества потреблялось этой машиной, электронные лампы быстро перегревались и выходили из строя. Целая группа студентов занималась только тем, что непрерывно искала и заменяла перегоревшие лампы.

В СССР основоположником вычислительной техники стал Сергей Алексеевич Лебедев, создавший МЭСМ (малая счетная машина) 1951 год (Киев) и БЭСМ (быстродействующая ЭСМ) – 1952 г., Москва.

II поколение: В 1948 году американским ученым Уолтером Брайттеном был изобретен ТРАНЗИСТОР, полупроводниковый прибор, который заменил радиолампы. Транзистор был намного меньше радиолампы, был более надежным и потреблял намного меньше электричества, он один заменял 40 электронных ламп! Вычислительные машины стали меньше в размерах и значительно дешевле, их быстродействие достигло нескольких сот операций в секунду. Теперь ЭВМ были размером с холодильник, их могли приобрести и использовать научные и технические институты. В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня БЭСМ-6.

III поколение: Вторая половина 20-го века характеризуется бурным развитием науки и техники, особенно физики полупроводников и с 1964 года транзисторы стали размещать на микросхемах, выполненных на поверхностях кристаллов. Это позволило преодолеть миллионный барьер в быстродействии.

IV поколение: Начиная с 1980 года ученые научились на одном кристалле размещать несколько интегральных микросхем, развитие микроэлектроники привело к созданию микропроцессоров. Кристалл ИС меньше и тоньше контактной линзы. Быстродействие современных ЭВМ исчисляется сотнями миллионов операций в секунду.

В 1977 году появился первый ПК (персональный компьютер) фирмы Apple Macintosh. С 1981 года лидером в производстве ПК стала фирма IBM (International Business Machine), эта фирма работала на рынке США еще с 19-го века и выпускала различные устройства для офисов – счеты, арифмометры ручки и т.д. и зарекомендовала себя как надежная фирма, которой доверяло большинство деловых людей в США. Но не только поэтому ПК IBM были намного популярнее, чем ПК Apple Macintosh. ПК Apple Macintosh представляли собой “черный ящик” для пользователя – он не разобрать модернизировать ПК, присоединять к ПК новые устройства, а ПК IBM были открыты для пользователя и тем самым позволяли собирать ПК как детский конструктор, поэтому большинство пользователей выбрали ПК IBM. Хотя мы с вами при слове ЭВМ представляем именно ПК, но существуют задачи, которые даже современные ПК решить не могут, с которыми могут справиться только суперЭВМ, быстродействие которых исчисляется миллиардами операций в секунду.

Научная школа Лебедева по своим результатам успешно соперничала с ведущей фирмой США IBM . Среди ученых мира, современников Лебедева, нет человека, который подобно ему обладал бы столь мощным творческим потенциалом, чтобы охватить своей научной деятельностью период от создания первых ламповых ЭВМ до сверхбыстродействующей суперЭВМ. Когда американский ученый Норберт Винер, которого называют «первый киберпророк», в 1960 году приезжал в СССР, он отметил « Они совсем немного отстают от нас в аппаратуре, зато далеко впереди нас в ТЕОРИИ автоматизации». К сожалению, в 60-х годах наука кибернетика подвергалась гонениям, как «буржуазная лженаука», ученых-кибернетиков сажали в тюрьмы, из-за чего советская электроника стала заметно отставать от зарубежной. Хотя создавать новые ЭВМ становилось невозможным, запретить мыслить ученым никто не мог. Поэтому до сих пор наши российские ученые опережают мировую научную мысль в области теории автоматизации.

Для разработки программ для ЭВМ создавались различные языки программирования (алгоритмические языки). Фортран FORTRAN – FORmula TRANslated – первый язык, создан в 1956 году Дж. Бэкусом. В 1961 году появился Бейсик BASIC (Beginners All-purpose Simbolic Instartion Code –многоцелевой язык символических инструкций для начинающих) Т.Куртц, дж. Кемени.В 1971 году профессор Цюрихского университета Николас Вирт создал язык Паскаль Pascal, который назвал в честь ученого Блеза Паскаля. Создавались и другие языки: Ада, Алгол, Кобол, Си, Пролог, Фред, Лого, Лисп и др. Но до сих пор самым популярным языком программирования является Паскаль, многие более поздние языки взяли из Паскаля основные команды и принципы построения программы, например язык Си, Си+ и система программирования Delphi, даже Бейсик, изменившись позаимствовал из Паскаля его структурированность и универсальность. Мы с вами в 11-ом классе будем изучать язык Паскаль и научимся создавать программы для решения задач с формулами, для обработки текста, научимся рисовать и создавать движущиеся рисунки.

Суперкомпьютеры

5. Будущее компьютеров

6. Закрепление новых знаний

Закрепление нового материала возможно с помощью теста в мультимедийной презентации к уроку: раздел «Проверь себя» в каждой части презентации: «Предыстория компьютеров», «Поколения ЭВМ», «Галерея учёных».

Проверка знаний по данной теме возможно с помощью тестов «История вычислительной техники» (Приложение 1 ) в 4-х вариантах и тест об учёных «Информатика в лицах» (Приложение 2 )

7. Подведение итогов урока

Проверка заполненных таблиц (Приложение 3 )

8. Домашнее задание

  • лекция в тетради по презентации, таблицы «Предыстория компьютеров», «Поколения ЭВМ»
  • подготовить сообщение про 5-ое поколение ЭВМ (будущее компьютеров)

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама