THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Необходимо иметь в виду, что эти соотношения отвечают равновесным условиям, которые имеют место при полном протекании диффузионных процессов.

Наряду с неограниченными растворами ряд металлов и элементов образуют друг с другом ограниченные твердые растворы, когда растворы образуются лишь в определенном диапазоне концентраций, а при более высоких концентрациях образуются другие структурные образования.

Специфика ограниченных твердых растворов состоит в том, что на диаграммах состояния область твердых растворов примыкает к чистым компонентам (небольшие концентрации легирующего элемента). Эти твердые растворы сохраняют структуру чистых металлов, а другие структурные образования на диаграмме состояния, называемые промежуточными фазами или интерметаллическими соединениями , имеют структуру, отличающуюся от основного и легирующего металла. На рис. 13 в качестве примера приведена двойная диаграмма состояния алюминий – магний (левая часть диаграммы). Предельная растворимость магния в алюминии при температуре 449°С равна 17,4 % (по массе), а минимальная растворимость при температуре 20°С составляет лишь 1,4 % Mg (для равновесного состояния). Только в этом интервале магний образует с алюминием твердый раствор – a. Свыше отмеченных предельных концентраций растворимости магния в алюминии появляется промежуточная фаза (интерметаллическое соединение) примерного химического состава .

Рис. 13. Левая часть диаграммы состояния Al-Mg

Рис. 14. Диаграмма состояние Al-Si

Интерметаллические соединения, как правило, повышают твердость и снижают пластичность сплава.

Диаграмму состояния эвтектического типа образуют два металла, образующие в жидком состоянии взаимные растворы, но практически не растворимые в твердом состоянии. В твердом состоянии структура таких сплавов представляет эвтектику – механическую смесь зерен двух металлов.

Примером диаграммы эвтектического типа служит диаграмма состояния алюминий-кремний. Для такой системы сплавов характерно наличие чисто эвтектического состава – для сплава Al-Si эвтектический состав равен 11,7 % Si + Al – остальное.

Эвтектические сплавы имеют строго определенную температуру солидуса; в частности для сплавов Al-Si температура солидуса равна 588°С.

Именно при этой температуре происходит окончание затвердевания при всех концентрациях кремния. Чисто эвтектический сплав данной системы имеет концентрацию кремния 11,7 %, его затвердевание происходит при постоянной температуре – 588°С (без интервала затвердевания). Литейный сплав Ак12 считается чисто эвтектическим сплавом. Сплавы с концентрацией кремния менее 11,7 % Si являются доэвтектическими и имеют структуру: a + эвтектика, где a – твердый раствор кремния в алюминии имеет очень низкую концентрацию кремния и представляет почти чистый алюминий. Сплавы с концентрацией кремния свыше 11,7 % – заэвтектические и характеризуются структурой: кремний + эвтектика. Доэвтектические и заэвтектические сплавы затвердевают в температурном интервале, но при одинаковой температуре солидуса 588°С.

Значительно меньшее применение в технике имеют сплавы, характеризующиеся диаграммами состояния перитектического типа; равно как и сплавы с фазовыми диаграммами, имеющие химические соединения.

Кроме того, большинство сплавов являются многокомпонентными, т.е. содержат не один, а несколько легирующих элементов. В этом случае диаграмма состояния не может быть представлена плоским изображением. Так сплавы из трех элементов представляются диаграммой состояния в трехмерном изображении: равносторонним треугольником задается состав сплавов, а перпендикуляры в углах к плоскости треугольника отражают величину температуры; фазовые превращения в трехкомпонентном сплаве представляются поверхностями над плоскостью равностороннего треугольника. Для плоского изображения при анализе таких диаграмм пользуются политермическими разрезами (сечение вертикальной плоскостью) и изотермическими разрезами (сечение горизонтальной плоскостью). Однако чаще всего многокомпонентный сплав рассматривают как двухкомпонентный с плоским представлением диаграммы состояния. Легирующие элементы по своему действию на фазовые переходы учитываются путем введения коэффициентов приведения к основному легирующему элементу.

На рис. приведена диаграмма состояния Al—Mg. Средняя часть диаграммы показана в увеличенном масштабе.
В системе образуются фазы β(Al3Mg2), γ(Al12Mgl7), ζ(Al52Mg48), ε(Al30Mg23). Фазы β и γ плавятся конгруэнтно при температурах 453 и 460 °С, соответственно. Фазы ε и ζ образуются по перитектическим реакциям при температурах 450 и 452 °С, соответственно.
В системе существуют три эвтектических равновесия: Ж ↔Mg+ γ при температуре 438 °С, Ж ↔(А1) + β при 450 °С, Ж ↔ε + β при 448 °С, а также два эвтектоидных равновесия ε↔ β + ζ при -428 °Cи ζ ↔β + γ при 410 °С.
Растворимость Mgв (А1) исследована во многих работах.

Растворимость Mg:

% (ат.) ......................

% (по массе) .............

Максимальная растворимость Mgв (А1) определена равной 16,5 % (ат.), так же как и в ряде других работ, где не был использован метод рентгеновского анализа. Данные по растворимости А1 в (Mg), полученные в разных исследованиях, также различаются. Наиболее вероятны значения, приведенные ниже:

Растворимость Аl:

% (ат.) .....................

% (по массе) ............


Источники:

  1. Диаграммы состояния двойных и многокомпонентных систем на основе железа. Банных О. А., Будберг П.Б., Алисова С. П. и др. Металлургия, 1986 г.
  2. Двойные и многокомпонентные системы на основе меди. под ред. Шухардина С.В. Наука, 1979 г.
  3. Диаграммы состояния двойных металлических систем ред. Лякишева Н.П.Машиностроение, 1996-2000 г.

Алюминий является одним из важнейших материалов, используемых в электронной промышленности, как в чистом виде, так и в составе многочисленных типов сплавов на его основе. Чистый алюминий не имеет аллотропических модификаций, обладает высокой теплопроводностью и электропроводностью, составляющими 62-65% от аналогичных параметров для меди. Температура плавления алюминия - 660 °С, температура кипения - 2500 °С. Твердость чистого алюминия составляет 25 НВ по Бринелю. Алюминий легко обрабатывается резанием, волочением, давлением.

При контакте с воздухом на поверхности алюминия образуется бес- пористая защитная оксидная пленка толщиной примерно 2 нм (20 А), защищающая его от дальнейшего окисления. Алюминий обладает низкой коррозионной стойкостью в растворах щелочей, соляной и серной кислотах. Органические кислоты и азотная кислота на него не действуют.

Промышленность выпускает несколько марок алюминия: особой чистоты, высокой чистоты и технической чистоты. Алюминий особой чистоты марки А999 содержит не более 0,001% примесей; высокой чистоты марок А995, А99, А97 и А95 соответственно - не более 0,005; 0,01; 0,03 и 0,05% примесей; технической чистоты марки А85 - не более 0,15% примесей.

В электронике чистый алюминий применяют при производстве электролитических конденсаторов, фол ьг, а также в качестве мишеней при формировании алюминиевых токопроводящих дорожек микроэлектронных устройств с использованием методов термического, ионно-плазменного и магнетронного напыления.

Наибольший интерес для электронной техники представляют сплавы на основе систем «алюминий - медь» и «алюминий - кремний», составляющие две большие группы деформируемых и литейных сплавов, используемых в качестве конструкционных материалов.

На рис. 2.7 приведена равновесная диаграмма состояния системы «алюминий - медь» со стороны алюминия. Эвтектический сплав в данной системе содержит 33% меди и имеет температуру плавления 548 °С. При повышении содержания в сплаве интерметаллида повышается прочность сплава, но ухудшается его обрабатываемость. Растворимость меди в алюминии при комнатной температуре составляет 0,5% и достигает 5,7% при эвтектической температуре.

Сплавы с содержанием меди до 5,7% можно перевести в однофазное состояние путем их закалки с температуры выше линии BD. При этом закаленный сплав обладает достаточной пластичностью при умеренной прочности и допускает обработку деформацией. Однако образовавшийся после закалки твердый раствор является неравновесным, и в нем протекают процессы выделения интерметаллидов, сопровождающиеся повышением прочности сплавов. При комнатной температуре этот процесс протекает в течение 4-6 сут и называется естественным старением сплава. Ускорение процесса старения материала обеспечивают его выдержкой при повышенной температуре, такой процесс называют искусственным старением.

Рис. 2.7. Диаграмма состояния системы «алюминий-медь» Другую группу алюминиевых сплавов, называемых литейными сплавами алюминия или силуминами, составляют сплавы на основе системы «алюминий - кремний». Диаграмма состояния данной системы приведена на рис. 2.8.


Рис. 2.8.

Эвтектический сплав содержит 11,7% кремния и имеет температуру плавления 577 °С. В данной системе не образуется интерметаллических соединений. Эвтектические сплавы обладают хорошими литейными и удовлетворительными механическими свойствами, которые улучшаются при введении в сплав до 1 % соединений натрия.

На основе алюминия производится большое количество разнообразных сплавов, отличающихся малой плотностью (до 3 г/см 3), высокими коррозионной стойкостью, теплопроводностью, электропроводностью, жаропрочностью, прочностью и пластичностью при низких температурах, хо­рошей светоотражательной способностью. На изделия из алюминиевых сплавов легко наносятся защитные и декоративные покрытия, они легко обрабатываются резанием и свариваются контактной сваркой.

Алюминиевые сплавы наряду с основным металлом-алюминием могут содержать один или бо­лее из пяти основных легирующих компонентов: медь, кремний, магний, цинк и марганец, а также железо, хром, титан, никель, кобальт, серебро, литий, ванадий, цирконий, олово, свинец, кадмий, висмут и др. Легирующие компоненты при достаточно высокой температуре полностью растворяются в жидком алюминии. Растворимость в твердом состоянии с образованием твердого раствора для всех элементов ограничена. Нерастворившиеся частицы или образуют в структуре сплава самостоятельные, чаще всего твердые и хрупкие кристаллы, или присутствуют в виде чистых эле­ментов (кремния, олова, свинца, кадмия, висмута), или в виде интерметаллических соединений с алюминием (А 2 Cu; Al 3 Mg 2 ; Аl 6 Mn; АlMn; Al 3 Fe ; А 7 Сг; Al 3 Ti ; Al 3 Ni ; AlLi ).

В сплавах с двумя или тремя легирующими компонентами интерметаллические соединения входят в состав двойных (Mg 2 Si , Zn 2 , Mg ), тройных [ α (AlFeSi )] и более сложных фаз.

Образующийся твердый раствор и наличие гетерогенных структурных составляющих опреде­ляют физические, химические и технологические свойства сплавов. Влияние легирования на структуру сплавов описывается диаграммой состояния, по которой определяется характер проте­кания процесса затвердевания, состав образующихся фаз и возможность различных превращений в твердом состоянии. На рис. 1 - 9 рассмотрены диаграммы состояния двойных и тройных алюминиевых сплавов.


Сплав системы Al -Cu. Из диаграммы видно, что при содержании меди от 0 до 53% имеет место простая эвтектическая система Аl(α ) – Аl 2 Cu(θ) с эвтектикой при температуре 548°С и содержании 33% Cu. Максимальная растворимость (при эвтектической температуре) меди в α -твердом растворе - 57%. Растворимость меди уменьшается с понижением температуры и при температуре 300°С составляет 0,5%. Нерастворившаяся медь находится в равновесном состоянии в виде фазы А 2 Cu. При средних температурах в результате распада пересыщенного твердого рас­твора образуются метастабильные промежуточные фазы (θ " и θ ").

Сплав системы Al - Si . Система чисто эвтектическая, существующая при температуре 577°С и содержании 12,5% Si . В α -твердом растворе при этой температуре растворяется 1, 6 % Si . На кристаллизацию эвтектического кремния может влиять незначительная добавка натрия. При этом происходит зависимое от скорости затвердевания переохлаждение и смещение эвтектической точки с соответствующим измельчением эвтектической структуры.

Сплав системны Al - Mg . Область содержания магния в сплаве от 0 до 37,5% является эвтектической. Эвтектика существует при температуре 449°С и содержании 34,5% Mg . Рас­творимость магния при этой температуре максимальная и составляет 17,4%. При температуре 300°С в α -твердом растворе растворяется 6,7% Mg ; при 100°С - l ,9% Mg . Нерастворившийся магний находится в структуре чаще всего в виде β -фазы (Al 3 Mg 2 ).

Сплав системы Al - Zn . Сплавы этой системы образуют эвтектическую систему при температуре 380°С с богатой цинком эвтектикой при содержании 97% Zn . Максимальная растворимость цинка в алюминии - 82%. В области α -твердого раствора ниже температуры 391°С имеется разрыв. Обогащенная цинком α -фаза при температуре 275°С распадается с образованием эвтектической смеси алюминия с 31,6% Zn и цинка с 0,6%Аl. Далее растворимость цинка понижается и при температуре 100°С она составляет всего 4%.

Диаграммы состояния сплавов систем Al -Mn , Al - Fe свидетельствуют о существовании эвтектики при очень малых концентрациях легирующих элементов. За исключением марганца растворимость элементов в твердом состоянии незначительна, например, железа < 0,05%.

В сплавах систем Al - Ti (см. рис. 1.14), Аl- C r растворимость элементов составляет десятые доли процента.

В сплаве системы Al -Рb с понижением температуры происходит разделение компонентов уже в расплаве с образованием двух жидких фаз. Затвердевание начинается практически при температуре плавления алюминия и заканчивается при температуре плавления легирующего элемента (моноэвтектическая кристаллизация).

Сплав системы Al - Mg - Si состоит из двух тройных эвтектик. Тройная эвтектика Al - Mg 2 S i - Si , содержащая 12% Si и 5% Mg , плавится при температуре 555°С. Эвтектика Al - Mg 2 Si - AlbMg 2 с температурой плавления 451°С почти не отличается от двойной системы Al - Al 3 Mg 2 . Линия ликвидуса, соединяющая обе тройные эвтектические точки, переходит через максимум при температуре 595°С точно по квазибинарному сечению (8,15% Mg и 4,75% Si ). Благодаря избытку магния (по отношению к Mg 2 Si ) растворимость кремния в α -твердом растворе сильно уменьшается. Сплавы Al - Mg , особенно литейные, содержат несколько десятых процента кремния и поэтому относятся к частичной системе Al - Mg 2 Si - Al 3 Mg 2 .

Сплав системы Al - Cu - Mg . Диаграмма состояния этой системы показывает, что наряду с двойными фазами A 3 Mg 2 ) и Аl 2 Cu(θ) в равновесии с твердым раствором α могут находится две тройные фазы S и Т. За перитектическим превращением при высоком содержании меди образуется близко к квазибинарному сечение A l- S (температура эвтектики 518°С) и частичная эвтектическая область Al - S - Al 2 Cu (температура эвтектики 507°С). Богатая магнием фаза Т (Al 6 Mg 4 Cu ) возникает на основе фазы S в результате перитектической четырехфазной реакции при температуре 467°С. При температуре 450°С происходит последующая перитектическая четырехфазная реакция, по которой фаза Т превращается в β.

Сплав системы Al - Cu - Si . Диаграмма состояния сплава показывает, что алюминий образует с кремнием и фазой А 2 Cu простую тройную эвтектическую частичную систему (температура эвтектики 525°С). Совместное присутствие меди и кремния не влияет на взаимную растворимость их в α -твердом растворе.

Сплав системы Al - Zn - Mg . В построении алюминиевого угла системы участвуют двойные фазы Al 3 Mg 2 , MgZn 2 и тройная фаза Т, отвечающая среднему химическому составу Al 2 Mg 3 Zn 3 . Сечения Al - MgZn 2 и Al -Т остаются квазибинарными (температура эвтектики 447°С). В частичной области Al - T - Zn при температуре 475°С имеет место перитектическая четырехфазная реакция, по которой фаза Т превращается в фазу MgZn 2 . В дальнейшем при прохождении четырехфазной реакции при температуре 365°С из фазы MgZn 2 при высоком содержании цинка образуется фаза MgZn 5 , которая вместе с алюминием и цинком кристаллизуется по эвтектической реакции при температуре 343°С.

В сплавах на основе алюминия легирование основными компонентами предусматривается та­ким образом, чтобы их суммарное содержание находилось ниже максимальной растворимости. Исключение составляет кремний, который благодаря благоприятным механическим свойствам эвтектики используется в эвтектической и заэвтектической концентрациях.

Примеси и добавки могут видоизменить диаграмму состояния лишь незначительно. Эти элементы чаще всего слабо растворяются в твердом растворе и образуют гетерогенные выделения в структуре.

Вследствие неполного выравнивания концентрации внутри первичных кристаллов алюминиевого твердого раствора во время его затвердевания в структуре могут появиться эвтектические участки при концентрации ниже максимальной растворимости, особенно в литом состоянии. Они располагаются по границам первичных зерен и препятствуют обрабатываемости.

Поскольку легирующие добавки растворяются в твердом растворе, гетерогенные структурные составляющие могут быть устранены длительным нагреванием при высоких температурах (гомо­генизации) дуффузионным путем. При горячем деформировании хрупкие выделения по границам зерен механически разрушаются и распределяются в структуре в строчечном режиме. Этот про­цесс характерен при превращении литой структуры в деформированную.

Алюминиевые сплавы по способу обработки подразделяются на деформируемые и литейные.

В настоящее время разрабатываются новые славы на основе алюминия, позволяющие еще больше расширить сферу применения этих материалов. Так, для проекта экологичного самолета, работающего на жидком водороде (его температура –253 о С) потребовался материал, который при таких низких температурах не охрупчивается. Разработанный в России сплав О1420 на основе алюминия, легированного литием и магнием, удовлетворяет этим требованиям. Кроме того, за счет того, что оба легирующих элемента в этом сплаве легче алюминия, удается понизить удельный вес материала, и соответственно, полетную массу машин. Сочетая хорошую прочность, присущую дюралям, и пониженную плотность, сплав кроме того обладает высокой коррозионной стойкостью. Таким образом, современная наука и технология идет по пути создания материалов, сочетающих максимально возможный набор полезных качеств.

Необходимо также отметить, что в настоящее время одновременно с традиционной буквенно-цифровой существует новая цифровая маркировка алюминиевых сплавов – см. рис. 3 и табл. 10.

Рисунок 3 – Принцип цифровой маркировки алюминиевых сплавов

Таблица 10

Примеры обозначений с помощью новой маркировки

Легирующие элементы

Маркировка

Традиционная

Al (чистый)

Список литературы

1. Колачев Б.А., Ливанов В.А., Благин В.И. Металловедение и термическая обработка цветных металлов и сплавов. М.: Металлургия, 1972.-480 с.

2. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990.-528 с.

3. Гуляев А.П. Металловедение. М.: Металлургия, 1986.-544 с.

4. Энциклопедия неорганических материалов. Том 1.: Киев: Гл.ред.укр.сов.энц., 1977.-840 с.

5. Энциклопедия неорганических материалов. Том 2.: Киев: Гл.ред.укр.сов.энц., 1977.-814 с.

6. Материаловедение и технология материалов. Фетисов Г.П., Карпман М.Г., Матюнин В.М. и др. М.- В.Ш., 2000.- с.182

Приложение 1

Диаграмма состояния Al-Mg (a) и зависимость механических свойств

сплавов от содержания магния (б)

Приложение 2

Диаграмма состояния Al - Cu :

штриховая линия – температура закалки сплавов

Приложение 3

Диаграмма состояния Al Si (а) и влияние кремния

на механические свойства сплавов

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………4

1 Алюминий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …...4

2 Сплавы на основе алюминия. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …...5

2.1 Деформируемые алюминиевые сплавы,

не упрочняемые термической обработкой. . . . . . . . . . . . . . . . . . . . . . . . .......6

2.2 Деформируемые алюминиевые сплавы,

упрочняемые термической обработкой. . . . . . . . . . . . . . . . . . . . . . . . . . . .......7

2.3 Литейные алюминиевые сплавы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......11

2.4 Сплавы, получаемые методом порошковой металлургии………...……..…..14

Заключение………………………………………………….………………..……..16

Список литературы……………………….………………………………………...17

Приложение 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …. . . . . . . . . . . . . . . . . . . ….19

Приложение 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . ….. 20

Приложение 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . ….21

Кафедра теоретических основ материаловедения

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама