THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Диаграммы потоков данных (ОТО) являются основным средством моделирования функциональных требований к проектируемой системе. С их помощью требования представляются в виде иерархии функциональных компонентов (процессов), связанных потоками данных. Главная цель такого представления - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Для построения ЭГО-диаграмм используются две различные нотации, соответствующие методам Иордана и Гейна-Сэрсона, которые незначительно отличаются графическими изображениями символов. Далее при построении примеров будет использоваться нотация Гейна-Сэрсона. Построение БРЭ-диаграмм в основном ассоциируется с разработкой программных систем, и нотация ЭРЭ изначально была разработана для этих целей.

В соответствии с данными методами модель системы определяется как иерархия потоков данных, описывающих асинхронный процесс преобразования информации от ее входа в систему до выдачи пользователю. Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут такой уровень декомпозиции, на котором процессы становятся элементарными, так что детализировать их далее невозможно.

Источники информации (внешние сущности) порождают информационные потоки (потоки данных ), переносящие информацию к подсистемам или процессам. Те, в свою очередь, преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям - потребителям информации.

Основными компонентами ОГБ-диаграмм являются:

  • внешние сущности;
  • системы и подсистемы;
  • накопители данных;
  • потоки данных.

Внешние сущности представляют собой материальные объекты или физическое лицо, являющее собой источник или приемник информации, например заказчика, персонала, поставщика, клиента, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что они находятся за пределами границ анализируемой системы. В процессе анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы анализируемой системы, если это необходимо, или, наоборот, часть процессов может быть вынесена за пределы диаграммы и представлена как внешняя сущность.

Внешняя сущность обозначается квадратом (рис. 5.12), расположенным как бы над диаграммой и бросающим тень для того, чтобы можно было выделить символ среди других обозначений. При построении модели сложной программной системы она может быть представлена в самом общем виде на так называемой контекстной диаграмме в виде од-

ной системы как единого целого либо может быть декомпозирована на несколько подсистем (рис. 5.13).

Рис. 5.12.

Идентификатор

Поленомера

Полеимени Поле

физической

реализации

Рис. 5.13. Контекстная диаграмма

Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в форме предложения с подлежащим и соответствующими определениями и дополнениями.

Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Физически процесс может быть реализован различными способами: это может быть подразделение (отдел) организации, выполняющее определенную обработку входных документов и выпуск отчетов, программа, аппаратно реализованное физическое устройство и т.д. Процесс на диаграмме изображается в виде прямоугольника с закругленными углами (рис. 5.14).

Поле номера

Поле имени Поле

физической

реализации

Рис. 5.14. Изображение процесса

Номер процесса служит для ее идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме («вычислить», «проверить», «рассчитать», «создать» и т.п.), за которым следует существительное в винительном падеже (рис. 5.14). Использование таких глаголов, как «обработать», «модернизировать» или «отредактировать», означает недостаточно глубокое понимание данного процесса и требует дальнейшего анализа. Информация в поле физической реализации показывает, какое подразделение, программа или устройство выполняет данный процесс.

Накопитель данных - это абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми. Накопитель данных (хранилище) может быть реализован физически в форме таблицы в оперативной памяти, файла на магнитном диске, ящика в картотеке и т.д. Накопитель данных на диаграмме идентифицируется буквой И и произвольным числом. Имя накопителя выбирается из соображений наибольшей информативности для проектировщика (рис. 5.15).

идентификации

Поле имени

Рис. 5.15. Изображение накопителя данных

Накопитель данных в общем случае является прообразом будущей базы данных, описание хранящихся в нем данных должно быть увязано с информационной моделью (ЕЯИ). Поток данных изображается стрелкой и описывает передвижение информации от источника к приемнику. Реально это может быть информация, передаваемая по кабелю между двумя устройствами, пересылаемые по почте письма, дискеты, перемещаемые с одного компьютера на другой и т.д. Каждый поток имеет имя, отражающее его содержание (рис. 5.16).

Сформировать отчетность по подоходному налогу

отчетности

Отчетность по

подоходном у налогу

Рис. 5.16.

Ссылки на ПБП-диаграммах могут быть разбиты (разветвлены) на части, при этом каждый получившийся сегмент может быть переименован таким образом, чтобы показать декомпозицию данных, переносимых некоторым потоком (рис. 5.17). Стрелки могут соединяться между собой (объединяться) для формирования комплексных объектов. Например, чтобы сформировать адрес налогоплательщика, необходимо иметь данные о его элементах (индексе, городе, улице, номере дома и номере квартиры).

Записать адрес налогоплательщика

Отдел учета налогоплательщиков

Рис. 5.17.

При использовании ОРЭ-диаграмм с целью моделирования функциональных требований, предъявляемых к программной системе, для ясности их понимания и удобства работы проектировщика строят иерархию диаграмм. При этом целесообразно выполнять следующие рекомендации :

  • размещать на каждой диаграмме от 3 до 6-7 процессов;
  • не загромождать диаграммы несущественными на данном уровне деталями;
  • декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов;
  • выбирать ясные, отражающие суть дела имена процессов и потоков, стараясь не использовать аббревиатуры.

Первым шагом при построении иерархии диаграмм потоков данных является построение контекстных диаграмм, показывающих, как проектируемая система будет взаимодействовать с пользователями и другими внешними системами (некоторый аналог вариантов использования в объектно ориентированном подходе). При проектировании относительно простых систем достаточно одной контекстной диаграммы, имеющей звездную топологию, в центре которой располагается основной процесс, соединенный с источниками и приемниками информации.

Для сложных систем строится иерархия контекстных диаграмм, которая определяет взаимодействие основных функциональных подсистем проектируемой системы как между собой, так и с внешними входными и выходными потоками данных и внешними объектами. При этом контекстная диаграмма верхнего уровня содержит набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют содержимое и структуру подсистем.

После построения контекстных диаграмм полученную модель надо проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами). Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи БРЭ-диаграмм. Каждое событие представляется в виде процесса с соответствующими входными и выходными потоками, накопителями данных, внешними сущностями ссылками на другие процессы для описания связей между этим процессом и его окружением.

Каждый процесс на ЙГО-диаграмме, в свою очередь, может быть детализирован при помощи ЭРЭ или (если процесс элементарный) спецификации. При детализации должны соблюдаться следующие правила:

  • правило балансировки, означающее, что при детализации подсистемы можно использовать только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми она имеет связь на родительской диаграмме;
  • правило нумерации, заключающееся в том, что при детализации процессов должна поддерживаться их иерархическая нумерация.

Спецификация процесса должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу. Спецификация является конечной вершиной иерархии .О/ 7 /). Решение о завершении детализации процесса и использование спецификации принимается аналитиком, исходя из следующих критериев :

  • наличие у процесса небольшого количества входных и выходных данных (2-3 потока);
  • возможности описания преобразования данных процессом в виде последовательного алгоритма;
  • выполнение процессом единственной логической функции преобразования входной информации в выходную;
  • возможности описания логики процесса при помощи спецификации небольшого объема (не более 20-30 строк).

Спецификации должны удовлетворять следующим требованиям:

  • для каждого процесса нижнего уровня должна существовать одна (и только одна) спецификация;
  • спецификация должна определять способ преобразования входных потоков в выходные;
  • нет необходимости (по крайней мере, на стадии формирования требований) определять метод реализации этого преобразования;
  • спецификация должна стремиться к ограничению избыточности: не следует переопределять то, что уже было определено на диаграмме;
  • набор конструкций для построения спецификаций должен быть простым и понятным.

Фактически спецификация представляет собой описание алгоритмов задач, выполняемых процессами. Спецификации содержат номер и (или) имя процесса, списки входных и выходных данных и тело (описание) процесса, являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные. Известно большое количество разнообразных методов, позволяющих описать тело процесса. Соответствующие этим методам языки могут варьироваться от структурированного естественного языка, или псевдокода, до языков визуального проектирования.

Структурированный естественный язык применяется для читабельного, достаточно строгого описания спецификаций процессов. Такой язык состоит из подмножества слов, организованных в определенные логические структуры, арифметических выражений и диаграмм. К управляющим структурам языка относятся последовательная конструкция, конструкция выбора и итерация (цикл).

При использовании структурированного естественного языка приняты следующие соглашения:

  • логика процесса выражается в виде комбинации последовательных конструкций, конструкций выбора и итераций;
  • глаголы должны быть активными, недвусмысленными и ориентированными на целевое действие (например, «заполнить», «вычислить», «извлечь», а не «модернизировать», «обработать»);
  • логика процесса должна быть выражена четко и недвусмысленно.

При построении иерархии диаграмм потоков данных переходить

к детализации процессов следует только после определения структур данных, которые описывают содержание всех потоков и накопителей данных. Структуры данных могут содержать альтернативы, условные вхождения и итерации. Альтернатива означает, что в структуру может входить один из перечисленных элементов. Условное вхождение показывает, что данный компонент может отсутствовать в структуре. Итерация предусматривает вхождение любого числа элементов из указанного диапазона.

Для каждого элемента может указываться его тип (непрерывный или дискретный). Для непрерывных данных могут указываться единица измерения, диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.

После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.

Основой данной методологии графического моделирования информационных систем является специальная технология построения диаграмм потоков данных DFD. В разработке методологии DFD приняли участие многие аналитики, среди которых следует отметить Э. Йордона (Е. Yourdon). Он является автором одной из первых графических нотаций DFD . В настоящее время наиболее распространенной является так называемая нотация Гейна-Сарсона (Gene-Sarson), основные элементы которой будут рассмотрены в этом разделе.

Модель системы в контексте DFD представляется в виде некоторой информационной модели, основными компонентами которой являются различные потоки данных, которые переносят информацию от одной подсистемы к другой. Каждая из подсистем выполняет определенные преобразования входного потока данных и передает результаты обработки информации в виде потоков данных для других подсистем.

Основными компонентами диаграмм потоков данных являются:

Внешние сущности

Накопители данных или хранилища

Процессы

Потоки данных

Системы/подсистемы

Внешняя сущность представляет собой материальный объект или физическое лицо, которые могут выступать в качестве источника или приемника информации. Определение некоторого объекта или системы в качестве внешней сущности не является строго фиксированным. Хотя внешняя сущность находится за пределами границ рассматриваемой системы, в процессе дальнейшего анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы модели системы. С другой стороны, отдельные процессы могут быть вынесены за пределы диаграммы и представлены как внешние сущности. Примерами внешних сущностей могут служить: клиенты организации, заказчики, персонал, поставщики.

Внешняя сущность обозначается прямоугольником с тенью (рис. 2.15), внутри которого указывается ее имя. При этом в качестве имени рекомендуется использовать существительное в именительном падеже. Иногда внешнюю сущность называют также терминатором.

Рис. 2.15. Изображение внешней сущности на диаграмме потоков данных

Процесс представляет собой совокупность операций по преобразованию входных потоков данных в выходные в соответствии с определенным алгоритмом или правилом. Хотя физически процесс может быть реализован различными способами, наиболее часто подразумевается программная реализация процесса. Процесс на диаграмме потоков данных изображается прямоугольником с закругленными вершинами (рис. 2.16), разделенным на три секции или поля горизонтальными линиями. Поле номера процесса служит для идентификации последнего. В среднем поле указывается имя процесса. В качестве имени рекомендовано использовать глагол в неопределенной форме с необходимыми дополнениями. Нижнее поле содержит указание на способ физической реализации процесса.

Рис. 2.16. Изображение процесса на диаграмме потоков данных

Рис. 2.17. Изображение подсистемы на диаграмме потоков данных

Информационная модель системы строится как некоторая иерархическая схема в виде так называемой контекстной диаграммы, на которой исходная модель последовательно представляется в виде модели подсистем соответствующих процессов преобразования данных. При этом подсистема или система на контекстной диаграмме DFD изображается так же, как и процесс – прямоугольником с закругленными вершинами (рис. 2.17).

Накопитель данных или хранилище представляет собой абстрактное устройство или способ хранения информации, перемещаемой между процессами. Предполагается, что данные можно в любой момент поместить в накопитель и через некоторое время извлечь, причем физические способы помещения и извлечения данных могут быть произвольными. Накопитель данных может быть физически реализован различными способами, но наиболее часто предполагается его реализация в электронном виде на магнитных носителях. Накопитель данных на диаграмме потоков данных изображается прямоугольником с двумя полями (рис. 2.18). Первое поле служит для указания номера или идентификатора накопителя, который начинается с буквы "D". Второе поле служит для указания имени. При этом в качестве имени накопителя рекомендуется использовать существительное, которое характеризует способ хранения соответствующей информации.

Рис. 2.18. Изображение накопителя на диаграмме потоков данных

Наконец, поток данных определяет качественный характер информации, передаваемой через некоторое соединение от источника к приемнику. Реальный поток данных может передаваться по сети между двумя компьютерами или любым другим способом, допускающим извлечение данных и их восстановление в требуемом формате. Поток данных на диаграмме DFD изображается линией со стрелкой на одном из ее концов, при этом стрелка показывает направление потока данных. Каждый поток данных имеет свое собственное имя, отражающее его содержание.

Таким образом, информационная модель системы в нотации DFD строится в виде диаграмм потоков данных, которые графически представляются с использованием соответствующей системы обозначений. В качестве примера рассмотрим упрощенную модель процесса получения некоторой суммы наличными по кредитной карточке клиентом банка. Внешними сущностями данного примера являются клиент банка и, возможно, служащий банка, который контролирует процесс обслуживания клиентов. Накопителем данных может быть база данных о состоянии счетов отдельных клиентов банка. Отдельные потоки данных отражают характер передаваемой информации, необходимой для обслуживания клиента банка. Соответствующая модель для данного примера может быть представлена в виде диаграммы потоков данных (рис. 2.19).

В настоящее время диаграммы потоков данных используются в некоторых CASE-средствах для построения информационных моделей систем обработки данных. Основной недостаток этой методологии также связан с отсутствием явных средств для объектно-ориентированного представления моделей сложных систем, а также для представления сложных алгоритмов обработки

данных. Поскольку на диаграммах DFD не указываются характеристики времени выполнения отдельных процессов и передачи данных между процессами, то модели систем, реализующих синхронную обработку данных, не могут быть адекватно представлены в нотации DFD. Все эти особенности методологии структурного системного анализа ограничили возможности ее широкого применения и послужили основой для включения соответствующих средств в унифицированный язык моделирования.


Рис. 2.19. Пример диаграммы DFD для процесса получения некоторой суммы наличными по кредитной карточке

При построении функциональной модели системы альтернативой методологии () является методология диаграмм потоков данных (Data Flow Diagrams, DFD). В отличие от , предназначенной для проектирования систем вообще, DFD предназначена для проектирования информационных систем. Ориентированность этой методологии на проектирование автоматизированных систем делает ее удобным и более выгодным инструментом при построении функциональной модели TO-BE.

При построении диаграмм различают элементы графической нотации, представленные в табл. 6.1.

Таблица 6.1. Элементы графической нотации DFD

Наименование Нотация Йордана Нотация Гейна-Сарсона
Поток данных
Процесс (система, подсистема)
Накопитель данных
Внешняя сущность

Поток данных определяет информацию (материальный объект), передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т. д.

Каждый поток данных имеет имя, отражающее его содержание. Направление стрелки показывает направление потока данных. Иногда информация может двигаться в одном направлении, обрабатываться и возвращаться назад в ее источник. Такая ситуация может моделироваться либо двумя различными потоками, либо одним – двунаправленным.

Определение некоторого объекта, субъекта или системы в качестве внешней сущности указывает на то, что она находится за пределами границ проектируемой информационной системы. В связи с этим внешние сущности, как правило, отображаются только на контекстной диаграмме DFD. В процессе анализа и проектирования некоторые внешние сущности могут быть перенесены на диаграммы декомпозиции, если это необходимо, или, наоборот, часть процессов (подсистем) может быть представлена как внешняя сущность.

Построение функциональной модели DFD начинается как и в IDEF0 с разработки контекстной диаграммы. На ней отображается основной процесс (сама система в целом) и ее связи с внешней средой (внешними сущностями). Это взаимодействие показывается через потоки данных. Допускается на контекстной диаграмме отображать сразу несколько основных процессов или подсистем. Пример контекстной диаграммы для рассматриваемой задачи приведен на следующем рисунке.


Рис. 6.23. Контекстная диаграмма системы определения допускаемых скоростей (методология DFD)

На этой диаграмме видно, что в качестве источника исходных данных для работы системы могут использоваться базы данных АРМ-П (АРМ службы пути) или СБД-П (Сводная БД – Путейский фрагмент), содержащие практически всю необходимую информацию по участкам дороги.

В то же время в системе оставлена возможность ее ручного ввода и корректировки. Несмотря на то, что БД АРМ-П или СБД-П по отношению к системе являются внешними сущностями, они, в целях лучшего восприятия, показаны в виде накопителя данных.

Дальнейший процесс проектирования состоит в построении диаграмм декомпозиции, которые строятся (показывают устройство) только для процессов или подсистем (систем) .

Диаграмма декомпозиции первого уровня проектируемой системы приведена на следующем рисунке.

Рис. 6.24. Диаграмма декомпозиции первого уровня (методология DFD)

На этом рисунке у некоторых потоков данных, связанных с накопителями, отсутствуют имена. Это позволяет устранить дублирование надписей и, как следствие, уменьшить насыщенность диаграммы.

При построении диаграммы декомпозиции блоки системы в одних случаях показаны как процессы (имя начинается с глагола), в других – как подсистемы (имя начинается со слова «подсистема»). Это сделано в целях иллюстрации правил именования блоков. В то же время декомпозицию системы можно было бы представить, либо используя только процессы, либо только подсистемы.

Контекстная диаграмма и диаграмма декомпозиции выполнены с использованием BPwin 4.0.

Решение о завершении детализации процесса и использовании миниспецификации принимается проектировщиком исходя из следующих критериев:

Наличия у процесса относительно небольшого количества входных и выходных потоков данных (2–3 потока);

Возможности описания процессов в виде простого алгоритма;

Возможности описания логики процесса при помощи миниспецификации небольшого объема (не более 20–30 строк).

Модель DFD, помимо описания функционального аспекта системы, содержит также сведения об информационном и компонентном аспектах. Совокупность накопителей данных является прообразом будущей БД, т.е. определяет состав и структуру информации. Построение диаграмм с использованием в качестве блоков подсистем показывает состав и связи компонентов будущей системы.

6.12. Расширения DFD для систем реального времени

Системы реального времени построены, как правило, на взаимодействии средств вычислительной техники и различных физических устройств съема информации (датчиков, камер, микрофонов и т. д.). Первые являются дискретными преобразователями информации, вторые в основном – аналоговыми, т.е. генерирующими информацию в виде непрерывного потока. Другой особенностью таких систем является значительный уклон в сторону управления объектами. Для моделирования особенностей поведения систем реального времени П. Вард и С. Меллор предложили использовать на DFD дополнительные элементы.

DFD ), обеспечивающей правильное описание выходов (отклика системы в виде данных) при заданном воздействии на вход системы (подаче сигналов через внешние интерфейсы). Диаграммы потоков данных являются основным средством моделирования функциональных требований к проектируемой системе.

При создании диаграммы потоков данных используются четыре основных понятия: потоки данных, процессы (работы) преобразования входных потоков данных в выходные, внешние сущности, накопители данных (хранилища) .

Потоки данных являются абстракциями, использующимися для моделирования передачи информации (или физических компонент) из одной части системы в другую. Потоки на диаграммах изображаются именованными стрелками, ориентация которых указывает направление движения информации.

Назначение процесса (работы) состоит в продуцировании выходных потоков из входных в соответствии с действием, задаваемым именем процесса. Имя процесса должно содержать глагол в неопределенной форме с последующим дополнением (например, "получить документы по отгрузке продукции"). Каждый процесс имеет уникальный номер для ссылок на него внутри диаграммы, который может использоваться совместно с номером диаграммы для получения уникального индекса процесса во всей модели.

Хранилище (накопитель) данных позволяет на указанных участках определять данные, которые будут сохраняться в памяти между процессами. Фактически хранилище представляет "срезы" потоков данных во времени. Информация, которую оно содержит, может использоваться в любое время после ее получения, при этом данные могут выбираться в любом порядке. Имя хранилища должно определять его содержимое и быть существительным.

Внешняя сущность представляет собой материальный объект вне контекста системы, являющейся источником или приемником системных данных. Ее имя должно содержать существительное, например, "склад товаров". Предполагается, что объекты, представленные как внешние сущности , не должны участвовать ни в какой обработке.

Кроме основных элементов, в состав DFD входят словари данных и миниспецификации.

Словари данных являются каталогами всех элементов данных, присутствующих в DFD , включая групповые и индивидуальные потоки данных, хранилища и процессы, а также все их атрибуты.

Миниспецификации обработки - описывают DFD -процессы нижнего уровня. Фактически миниспецификации представляют собой алгоритмы описания задач, выполняемых процессами: множество всех миниспецификаций является полной спецификацией системы.

Процесс построения DFD начинается с создания так называемой основной диаграммы типа "звезда", на которой представлен моделируемый процесс и все внешние сущности , с которыми он взаимодействует. В случае сложного основного процесса он сразу представляется в виде декомпозиции на ряд взаимодействующих процессов. Критериями сложности в данном случае являются: наличие большого числа внешних сущностей , многофункциональность системы, ее распределенный характер. Внешние сущности выделяются по отношению к основному процессу. Для их определения необходимо выделить поставщиков и потребителей основного процесса, т.е. все объекты, которые взаимодействуют с основным процессом. На этом этапе описание взаимодействия заключается в выборе глагола, дающего представление о том, как внешняя сущность использует основной процесс или используется им. Например, основной процесс – "учет обращений граждан", внешняя сущность – "граждане", описание взаимодействия – "подает заявления и получает ответы". Этот этап является принципиально важным, поскольку именно он определяет границы моделируемой системы.

Для всех внешних сущностей строится таблица событий , описывающая их взаимодействие с основным потоком. Таблица событий включает в себя наименование внешней сущности, событие, его тип (типичный для системы или исключительный, реализующийся при определенных условиях) и реакцию системы.

На следующем шаге происходит декомпозиция основного процесса на набор взаимосвязанных процессов, обменивающихся потоками данных. Сами потоки не конкретизируются, определяется лишь характер взаимодействия. Декомпозиция завершается, когда процесс становится простым, т.е.:

  1. процесс имеет два-три входных и выходных потока;
  2. процесс может быть описан в виде преобразования входных данных в выходные;
  3. процесс может быть описан в виде последовательного алгоритма .

Для простых процессов строится миниспецификация – формальное описание алгоритма преобразования входных данных в выходные.

Миниспецификация удовлетворяет следующим требованиям: для каждого процесса строится одна спецификация; спецификация однозначно определяет входные и выходные потоки для данного процесса; спецификация не определяет способ преобразования входных потоков в выходные; спецификация ссылается на имеющиеся элементы, не вводя новые; спецификация по возможности использует стандартные подходы и операции .

После декомпозиции основного процесса для каждого подпроцесса строится аналогичная таблица внутренних событий .

Следующим шагом после определения полной таблицы событий выделяются потоки данных , которыми обмениваются процессы и внешние сущности . Простейший способ их выделения заключается в анализе таблиц событий. События преобразуются в потоки данных от инициатора события к запрашиваемому процессу, а реакции – в обратный поток событий. После построения входных и выходных потоков аналогичным образом строятся внутренние потоки. Для их выделения для каждого из внутренних процессов выделяются поставщики и потребители информации. Если поставщик или потребитель информации представляет процесс сохранения или запроса информации, то вводится хранилище данных, для которого данный процесс является интерфейсом.

После построения потоков данных диаграмма должна быть проверена на полноту и непротиворечивость. Полнота диаграммы обеспечивается, если в системе нет "повисших" процессов, не используемых в процессе преобразования входных потоков в выходные. Непротиворечивость системы обеспечивается выполнением наборов формальных правил о возможных типах процессов: на диаграмме не может быть потока, связывающего две внешние сущности – это взаимодействие удаляется из рассмотрения; ни одна сущность не может непосредственно получать или отдавать информацию в хранилище данных – хранилище данных является пассивным элементом, управляемым с помощью интерфейсного процесса; два хранилища данных не могут непосредственно обмениваться информацией – эти хранилища должны быть объединены.

К преимуществам методики DFD ничем не отличаются от обычных; отсутствие понятия времени, т.е. отсутствие анализа временных промежутков при преобразовании данных (все ограничения по времени должны быть введены в спецификациях процессов).

Рассмотрим построение DFD модели информационной системы для сети магазинов по продажам сумок. Дополним диаграмму IDEF0, построенную в лабораторной работе № 1 DFD-диаграммой. Построим DFD-диаграмму для функции A4 «Анализировать работу» См. рис. 4.

Рис. 4. Пример DFD-диаграммы

Задание

  1. Изучить метод DFD.
  2. Дополнить функциональную модель информационной системы, построенную в лабораторной работе № 1, диаграммой потоков данных, для тех функциональных блоков IDEF0 модели, для которых требуется показать движение данных.
  3. Ответить на контрольные вопросы.
  4. Оформить отчет (Титульный лист, задание, DFD диаграмма)

Контрольные вопросы

  1. Какие процессы в системе описываются с помощью диаграмм потоков данных?
  2. Какие основные объекты диаграмм потоков данных?
  3. Используется ли принцип декомпозиции при построении DFD диаграмм?
  4. Место подхода стрелки к блокам или место выхода стрелки из блока может быть произвольным или подчиняется определенным правилам?
  5. Каким образом происходит выделение объекта во внешнюю сущность?

Литература

  1. Федотова, Д.Э. CASE-технологии: Практикум/ Д.Э. Федотова, Ю.Д. Семенов, К.Н. Чижик. - М.: Горячая линия – Телеком, 2005. - 160 с.: ил.
  2. Калашян, А.Н. Структурные модели бизнеса: DFD-технологии/ А.Н. Калашян, Г.Н. Калянов. - М.: Финансы и статистика, 2003.
  3. DFD -диаграммы потоков данных. - http://www.proinfotech.ru/dmdlr2.htm.
  4. Методы моделирования бизнесс-процессов. - http://www.jetinfo.ru/2004/10/1/article1.10.2004153.html.


Построение диаграммы декомпозиции в нотации DFD

Цель работы:

  • построить диаграмму декомпозиции в нотации DFD одной из работ диаграмм IDEF0, построенных в предыдущих лабораторных работах

Диаграммы потоков данных (Dataflowdiagram, DFD) используются для описания документооборота и обработки информации. Подобно IDEF0, DFD представляет моделируемую систему как сеть связанных между собой работ. Их можно использовать как дополнение к модели IDEF0 для более наглядного отображения текущих операций документооборота в корпоративных системах обработки информации. Главная цель DFD - показать, как каждая работа преобразует свои входные данные в выходные, а также выявить отношения между этими работами.

Любая DFD-диаграмма может содержать работы, внешние сущности, стрелки (потоки данных) и хранилища данных.

Работы. Работы изображаются прямоугольниками с закругленными углами (рис. 1), смысл их совпадает со смыслом работ IDEF0 и IDEF3. Так же как работы IDEF3, они имеют входы и выходы, но не поддерживают управления и механизмы, как IDEF0. Все стороны работы равнозначны. В каждую работу может входить и выходить по несколько стрелок.

Рисунок 1. Работа в DFD

Внешние сущности. Внешние сущности изображают входы в систему и/или выходы из нее. Одна внешняя сущность может одновременно предоставлять входы (функционируя как поставщик) и принимать выходы (функционируя как получатель). Внешняя сущность представляет собой материальный объект, например заказчики, персонал, поставщики, клиенты, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что они находятся за пределами границ анализируемой системы. Внешние сущности изображаются в виде прямоугольника с тенью и обычно располагаются по краям диаграммы (рис. 2).

Рисунок 2. Внешняя сущность в DFD

Стрелки (потоки данных). Стрелки описывают движение объектов из одной части системы в другую (отсюда следует, что диаграмма DFD не может иметь граничных стрелок). Поскольку все стороны работы в DFD равнозначны, стрелки могут могут начинаться и заканчиваться на любой стороне прямоугольника. Стрелки могут быть двунаправлены.

Хранилище данных. В отличие от стрелок, описывающих объекты в движении, хранилища данных изображают объекты в покое (рис. 3). Хранилище данных - это абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми. Оно в общем случае является прообразом будущей базы данных, и описание хранящихся в нем данных должно соответствовать информационной модели (Entity-RelationshipDiagram).

Рисунок 3. Хранилище данных в DFD

Декомпозиция работы IDEF0 в диаграмму DFD. При декомпозиции работы IDEF0 в DFD необходимо выполнить следующие действия:

  • удалить все граничные стрелки на диаграмме DFD;
  • создать соответствующие внешние сущности и хранилища данных;
  • создать внутренние стрелки, начинающиеся с внешних сущностей вместо граничных стрелок;
  • стрелки на диаграмме IDEF0 затоннелировать

Строго придерживаться правил нотации DFD не всегда удобно, поэтому BPWin позволяет создавать в DFD диаграммах граничные стрелки.

Построение диаграммы декомпозиции. Проведем декомпозицию работы Отгрузка и снабжение диаграммы А0 "Деятельность предприятия по сборке и продаже компьютеров и ноутбуков". В этой работе мы выделили следующие дочерние работы:

  • снабжение необходимыми комплектующими - занимается действиями, связанными с поиском подходящих поставщиков и заказом у них необходимых комплектующих
  • хранение комплектующих и собранных компьютеров
  • отгрузка готовой продукции - все действия, связанные с упаковкой, оформлением документации и собственно отгрузкой готовой продукции

Выделим работу Отгрузка и снабжение диаграммы А0 "Деятельность предприятия по сборке и продаже компьютеров и ноутбуков", нажмем на кнопку "GotoChildDiagram" панели инструментов и выберем нотацию DFD. При создании дочерней диаграммы BPWin переносит граничные стрелки родительской работы, их необходимо удалить и заменить на внешние сущности. Стрелки механизмов, стрелки управления "Правила и процедуры", "Управляющая информация" и стрелку выхода "Отчеты" на дочерней диаграмме задействованы не будут, чтоб не загромождать диаграмму менее существенными деталями. Остальные стрелки заменим на внешние сущности - кнопка "ExternalReferenceTool" на панели инструментов, в появившемся окне выбрать переключатель "Arrow" и выбрать из списка нужное название (рис. 4):



Рисунок 4. Добавление внешней сущности

Рисунок 5. Работы и внешние сущности

Центральной здесь является работа "Хранение комплектующих и собранных компьютеров". На ее вход поступают собранные компьютеры и полученные от поставщиков комплектующие, а также список необходимых для сборки компьютеров комплектующих. Выходом этой работы будут необходимые комплектующие (если они есть в наличии), список отсутствующих комплектующих, передаваемый на вход работы "Снабжение необходимыми комплектующими" и собранные компьютеры, передаваемые на отгрузку. Выходами работ "Снабжение необходимыми комплектующими" и "Отгрузка готовой продукции" будут, соответственно, заказы поставщикам и готовая продукция.

Следующим шагом необходимо определить, какая информация необходима для каждой работы, т.е. необходимо разместить на диаграмме хранилища данных (рис. 6).

Рисунок 6. Итоговая диаграмма декомпозиции

Работа "Снабжение необходимыми комплектующими" работает с информацией о поставщиках и с информацией о заказах, сделанных у этих поставщиков. Стрелка, соединяющая работу и хранилище данных "Список поставщиков" двунаправленная, т.к. работа может как получать информацию о имеющихся поставщиках, так и вносить данные о новых поставщиках. Стрелка, соединяющая работу с хранилищем данных "Список заказов" однонаправленная, т.к. работа только вносит информацию о сделанных заказах.

Работа "Хранение комплектующих и собранных компьютеров" работает с информацией о получаемых и выдаваемых комплектующих и собранных компьютеров, поэтому стрелки, соединяющая работу с хранилищами данных "Список комплектующих" и "Список собранных компьютеров" двунаправленные. Также эта работа при получении комплектующих должна делать отметку о том, что заказ поставщикам выполнен. Для этого она связана с хранилищем данных "Список заказов" однонаправленной стрелкой. Обратите внимание, что на DFD диаграммах одно и тоже хранилище данных может дублироваться.

Наконец, работа "Отгрузка готовой продукции" должна хранить информацию по выполненным отгрузкам. Для этого вводится соответствующее хранилище данных - "Данные по отгрузке".

Последним действием необходимо стрелки родительской работы затуннелировать (рис. 7):

Рисунок 7. Диаграмма IDEF0 с затуннелированными стрелками работы "Отгрузка и снабжение"

  • краткое описание декомпозируемой работы
  • диаграмма декомпозиции

Пример DFD-диаграммы процесса «Составление технологического задания» средствами Bpwin

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама