THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей. Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры. Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге. С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали.

Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами. Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла.

Механические методы.

Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).

Виды напряжений.

По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые. Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты – сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.

Испытания на растяжение.

Это – один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия. Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение – деформация. При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение – деформация служит мерой модуля упругости, пока не будет достигнут предел упругости. Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении – это максимальное напряжение, которое металл выдерживает в ходе испытания.

Испытания на ударную вязкость.

Один из самых важных видов динамических испытаний – испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).

Испытания на усталость.

Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения. Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений – то растягивающих, то сжимающих.

Испытания на глубокую вытяжку.

Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.

Испытания на ползучесть.

В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности. Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.

Определение твердости.

Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания «индентора» (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость – очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии. Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.

Испытания на излом.

В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию. Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.

Оптические и физические методы.

Микроскопическое исследование.

Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.

Радиографический контроль.

Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.

Магнитно-порошковый контроль.

Этот метод контроля пригоден лишь для ферромагнитных металлов – железа, никеля, кобальта – и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.

Ультразвуковой контроль.

Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта – трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле. Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации.

Специальные методы.

Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения. Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов.

МЕТАЛЛОВ ИСПЫТАНИЯ
Цель испытания материалов состоит в том, чтобы оценить качество материала, определить его механические и эксплуатационные характеристики и выявить причины потери прочности.
Химические методы. Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей. Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры. Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге. С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали. Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами. Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла.
См. также ХИМИЯ АНАЛИТИЧЕСКАЯ .
Механические методы. Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).
Виды напряжений. По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые. Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты - сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.
Испытания на растяжение. Это - один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия. Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение - деформация. При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение - деформация служит мерой модуля упругости, пока не будет достигнут предел упругости. Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении - это максимальное напряжение, которое металл выдерживает в ходе испытания. См. также МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА .
Испытания на ударную вязкость. Один из самых важных видов динамических испытаний - испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).
Испытания на усталость. Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения. Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений - то растягивающих, то сжимающих.
Испытания на глубокую вытяжку. Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.
Испытания на ползучесть. В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности. Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.
Определение твердости. Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания "индентора" (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость - очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии. Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.
Испытания на излом. В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию. Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.
Оптические и физические методы. Микроскопическое исследование. Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.
Радиографический контроль. Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.
Магнитно-порошковый контроль. Этот метод контроля пригоден лишь для ферромагнитных металлов - железа, никеля, кобальта - и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.
Ультразвуковой контроль. Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта - трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле. Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации.
См. также УЛЬТРАЗВУК .
Специальные методы. Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения. Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов.
См. также СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ .
ЛИТЕРАТУРА
Павлов П.А. Механические состояния и прочность материалов. Л., 1980 Методы неразрушающих испытаний. М., 1983 Жуковец И.И. Механические испытания металлов. М., 1986

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "МЕТАЛЛОВ ИСПЫТАНИЯ" в других словарях:

    испытания металлов методом гиба с перегибом - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN bend unbend test …

    испытания смазочных масел на содержание металлов - — Тематики нефтегазовая промышленность EN lubricating oil metal test … Справочник технического переводчика

    испытания в природных условиях - полевые испытания Коррозионные испытания металла, проводимые в атмосфере, в море, в почве и т.п. [ГОСТ 5272 68] Тематики коррозия металлов Синонимы полевые испытания … Справочник технического переводчика

    Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и… … Энциклопедия Кольера

    испытания - 3.3 испытания: Экспериментальное определение количественных или качественных характеристик объекта при его функционировании в условиях различных воздействий на него. Источник … Словарь-справочник терминов нормативно-технической документации

    испытания на ударный изгиб - испытания на изгиб надрезанных образцов на маятниковых копрах при начальной скорости удара 3 6 м/с (ГОСТ 9454); применяются прямоугольные образцы преимущественно длиной 55 мм, высотой 10 мм и шириной 2 10 мм с… …

    испытания на статическое растяжение - испытания (ГОСТ 1497) цилиндрических или плоских образцов на кратковременное растяжение со скоростью перемещения активного захвата машины ≤ 0,1l0; мм/мин, до достижения предела текучести и Энциклопедический словарь по металлургии

    испытания на коррозию - испытания для получения сравнительных данных о коррозионной стойкости материалов и покрытий в разных средах (ГОСТ 9905), а также с целью изучения кинетики и механизма коррозии. Испытания ведут на листовых образцах (5 10x25x40… … Энциклопедический словарь по металлургии

    испытания на кавицационную стойкость - [саvitation tests] испытания для оценочной характеристики сопротивления металлов и сплавов кавитационному воздействию с наиболее полной имитацией реальных параметров работы изделий (свойств среды, температуры и ресурса испытаний и др.).… … Энциклопедический словарь по металлургии

    испытания на изгиб - 1. испытания гладких узких образцов обычно при статическом сосредоточенном (трехточечном) изгибе для определения механических свойств металлов и сплавов пределов: пропорциональности (σпцизг), условных упругости(σ0,05изг) и текучести… … Энциклопедический словарь по металлургии

Книги

  • Металловедение и термическая обработка металлов. Учебник , Ю. М. Лахтин , Рассмотрены кристаллическое строение металлов, пластическая деформация и рекристаллизация. Изложены современные методы испытания механических свойств и критерии оценки конструктивной… Категория: Металлургическая промышленность. Металлообработка Издатель: АльянС ,

Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей. Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры. Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге. С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали.

Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами. Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла.

Механические методы.

Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).

Виды напряжений.

По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые. Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты – сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.

Испытания на растяжение.

Это – один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия. Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение – деформация. При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение – деформация служит мерой модуля упругости, пока не будет достигнут предел упругости. Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении – это максимальное напряжение, которое металл выдерживает в ходе испытания.

Испытания на ударную вязкость.

Один из самых важных видов динамических испытаний – испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).

Испытания на усталость.

Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения. Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений – то растягивающих, то сжимающих.

Испытания на глубокую вытяжку.

Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.

Испытания на ползучесть.

В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности. Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.

Определение твердости.

Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания «индентора» (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость – очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии. Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.

Испытания на излом.

В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию. Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.

Оптические и физические методы.

Микроскопическое исследование.

Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.

Радиографический контроль.

Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.

Магнитно-порошковый контроль.

Этот метод контроля пригоден лишь для ферромагнитных металлов – железа, никеля, кобальта – и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.

Ультразвуковой контроль.

Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта – трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле. Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации.

Специальные методы.

Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения. Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов.

Ответы на экзамены по ТКМ.

1. .Строение конструкционных материалов.

Металлы - кристаллические тела, атомы которых располага­ются в геометрически правильном порядке, образуя кристаллы, в отличие от аморфных тел (например, смола), атомы которых находятся в беспорядочном состоянии.

Располагаясь в металлах в строгом порядке, атомы в плоскости образуют атомную сетку, а в пространстве - атомно-кристаллическую решетку. Линии на этих схемах являются услов­ными; в действительности никаких линий не существует, а атомы колеблются возле точек равновесия, т. е. узлов решетки с большой частотой. Элементарные ячейки таких кристаллических решеток приве­дены на рис. 1. Все кристаллические тела образуют семь разновидностей кристаллических решеток, из которых для металлов наиболее характерны объемно-центрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГПУ) (рис. 1)

В ячейке кубической объемно-центрированной решетки атомы расположены в вершинах куба и в центре куба; такую решетку имеют хром, ванадий, вольфрам, молибден и др. В ячейке кубической гранецентрированной решетки атомы расположены в вер­шинах и в центре каждой грани куба; такую решетку имеют алю­миний, никель, медь, свинец и др. В ячейке гексагональной решетки атомы расположены в вершинах шестиугольных оснований призмы, в центре этих оснований и внутри призмы; гексагональную решетку имеют магний, титан, цинк и др. В реальном металле кристалли­ческая решетка состоит из огромного количества ячеек.

Размеры кристаллической решетки характеризуются ее пара­метрами, измеряемыми в ангстремах - А (1А = 10 -8 см или lA = 0,1 Нм). Параметр кубической решетки характеризуется дли­ной ребра куба, обозначается буквой а и находится в пределах 0,28-0,6 Нм (2,8 - 6А). Для характеристики гексагональной решетки принимают два параметра - сторону шестигранника а и высоту призмы с. Когда отношение с/а -- 1,633, то атомы упако­ваны наиболее плотно, и поэтому такая решетка называется гекса­гональной плотноупакованной.

Рис.1. Атомно-кристаллическое строение металлов.

2. .Типы кристаллических решеток.

Свойства кристалла определяются не только типом кристал­лической решетки, но и характером взаимодействия атомов, ионов и электронов между собой. При переходе паров металла в жидкость, а затем в твердое состояние его атомы сближаются настолько, что валентные электроны получают возможность пере­ходить от одного атома к другому и свободно перемещаться, таким образом, по всему объему металла, обеспечивая высокую электро- и теплопроводность. Между электронами и положительными ионами возникают силы электрического взаимодействия.





Рис. 2. Схемы кристаллических решеток:

а – объемно-центрированная кубическая; б - гранецентрированная кубическая; в - гексагональная плотноупакованная.

В зависимости от температуры и давления многие металлы могут образовывать различные типы кристаллических решеток. Эта способность металлов носит название полиморфизма или алло­тропии. Полиморфные превращения свойственны таким широко применяемым в машиностроении металлам, как Fe, Ti, Mn, Co, Sn. Полиморфные модификации элементов обычно обозначают, начи­ная с наиболее низкотемпературны, буквами α, β, γ, δ и т. д. Так например: железо при нагреве до температуры 910 °С образует модификацию α-Fe с ОЦК-решеткой, в интервале 910-1400 °С - γ-Fe с ГЦК-решеткой и свыше 1400 °С - δ-Fe с решеткой ОЦК. При этом происходит существенное изменение свойств материала. Это явление широко используют в технике для улучшения обра­батываемости металлов, при их термообработке и других про­цессах.



Для характеристики формы и размера элементарной ячейки кристаллической решетки используют (рис.2) шесть основных параметров: расстояния по осям координат - a, b, c называемые периодом решетки, и три угла - α, β, γ между этими отрезками. Кроме основных параметров в кристаллографии при­няты еще другие, дополнительно характеризующие кристалличе­скую решетку.

3. Анизотропия кристаллов и его влияние на свойства материалов.

В различных плоскостях кристаллической решетки атомы рас­положены с различной плотностью и поэтому многие свойства кристаллов в различных направлениях различны. Такое различие называется анизотропией.

Все кристаллы анизотропны. В отличие от кристаллов аморф­ные тела (например, смола) в различных направлениях имеют в основном одинаковую плотность атомов и, следовательно, одина­ковые свойства, т. е. они изотропны.

В металлах, состоящих из большого количества по-разному ориентированных мелких анизотропных кристаллов (поликри­сталл), свойства во всех направлениях одинаковы (усредненные). Эта кажущаяся независимость свойств от направления называется квазиизотропией *.

Если в структуре металла создается одинаковая ориентировка кристаллов, то появляется анизотропия.

При переходе металла из жидкого состояния в твердое про­исходит так называемый процесс кристаллизации. Основы теории кристаллизации разработаны основоположником науки о металлах - металловедения Д. К. Черновым, кото­рый установил, что кристаллизация состоит из двух процессов: зарождения мельчайших частиц кристаллов (зародышей кристаллизации) и роста кристаллов из этих центров (рис.3).

Рис.3 . Последовательные этапы процесса кристаллизации.

Рост кристаллов заключается в том, что к их зародышам при­соединяются все новые атомы жидкого металла. Сначала кристаллы растут свободно, сохраняя правильную геометрическую форму, но это происходит только до момента встречи растущих кристаллов. В месте соприкосновения кристаллов рост отдельных их граней прекращается и развиваются не все, а только некоторые грани кристаллов. В результате кристаллы не имеют правильной геометрической формы. Такие кристаллы называют кристаллитами или зернами. Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации, тем больше кристаллов образуется в данном объеме и каждый кристалл (зерно) меньше. На образование центров кристаллизации влияет скорость охлаждения. Чем больше скорость охлаждения металла, тем больше возникает в нем центров кристаллизации, и зерна получаются мельче (рис.4). Это подтверждается на практике в тонких сечениях литых деталей охлаждающихся более быстро, металл всегда получается более мелкозернистым, чем в толстых массивных литых деталях, охлаждающихся медленнее. Однако не всегда можно регулировать скорость охлаждения.

Всем кристаллам присуща анизотропия, т. е. неравномерность свойств по направлениям, определяемая различными рассто­яниями между атомами в кристаллической ячейке. Наиболее сильно анизотропия выражена у металлов, имеющих асимметричное кри­сталлическое строение. От направления действия сил в кристалле существенно зависят такие показатели физических свойств, как прочностные характеристики, модуль упругости, термический коэффициент расширения, коэффициенты тепло- и электропровод­ности, показатель светового преломления и др. Анизотропия характерна и для поверхностных слоев кристаллов. Такие свой­ства, как поверхностное натяжение, электронные потенциалы, адсорбционная способность, химическая активность существенно различаются у различных граней кристалла.

Рис.4. Влияние скорости охлаждения на возникновение центров кристаллизации и на величину образующихся зерен.

1 - медленное охлаждение, 2 – ускоренное охлаждение, 3 – быстрое охлаждение.

4. .Дефекты кристаллических решеток.

Строение и свойства реальных кристаллов отличаются от иде­альных, представленных на рис. 1, вследствие наличия в них дефектов, которые подразделяют на поверхностные и внутренние. Реальный единичный кристалл обладает свободной (наружной) поверхностью, на которой уже вследствие поверхностного натяже­ния решетка будет искажена. Это искажение может распростра­няться и на прилегающую к поверхности зону.

Рис.5. Дефекты кристаллической решетки:

а - точечные; б - линейные; в - двухмерные (плоскостные)

Дефекты внутреннего строения подразделяют на нульмерные (точечные), одномерные - линейные и двухмерные, т. е. развитые в двух направлениях. К точечным дефектам относятся: вакансии в случае, когда отдельные узлы кристаллической решетки не за­няты атомами; дислоцированные атомы, когда отдельные атомы оказываются в междуузлиях, или примесные атомы, количество которых даже в чистых металлах весьма велико. Около таких дефектов решетка будет упруго-искаженной на расстоянии одного-двух ее периодов (рис. 5, а). Хотя относительная концентрация точечных дефектов может быть невелика, они вызывают чрезвы­чайно большие изменения физических свойств материала. Напри­мер, тысячные доли атомного процента примесей к чистым полу­проводниковым кристаллам изменяют их электрическое сопроти­вление в 10 5 -10 8 раз.

Линейные дефекты малы в двух измерениях кристаллической решетки и достаточно велики в третьем. К таким дефектам отно­сятся смещения атомных плоскостей или дислокации и цепочки вакансий (рис. 5, б ). Важнейшим свойством таких дефектов является их подвижность внутри кристалла и активное взаимо­действие между собой и с другими дефектами.

Плотность дислокаций в кристаллах велика: в недеформированных кристаллах их количество на 1 см 3 достигает 10 6 -10 8 ; при пластической деформации происходит возникновение новых дисло­каций, и это число увеличивается в тысячи раз. Двухмерные де­фекты характерны для поликристаллических материалов, т. е. для материалов, состоящих из большого количества мелких кристаллов, различно ориентированных в пространстве.

Граница сросшихся при затвердевании кристаллов предста­вляет собой тонкую, до 10 атомных диаметров, зону с нарушением порядка в расположении атомов. В поликристаллическом теле границы отдельных кристаллов имеют криволинейные поверх­ности раздела, а сами кристаллы - неправильную форму. По­этому их, в отличие от правильно ограниченных кристаллов, на­зывают кристаллитами или зернами. Зерна поликристалла при затвердевании растут из различных центров кристаллизации и ориентация осей кристаллических решеток соседних зерен раз­лична. Зерно металла состоит из отдельных блоков, ориентирован­ных один по отношению к другому под небольшим углом. Границы между ними представляют собой обычно скопления дислокаций (рис. 5, в ). Поверхностные дефекты малы только в одном направле­нии; в двух других они могут достигать размера кристаллита.

5. .Влияние дефектов кристаллических решеток на свойства материалов.

Влияние дефектов строения на свойства материалов огромно. Например, прочность реальных кристаллов на сдвиг из-за наличия дефектов строения уменьшается на три-четыре порядка по сравне­нию с той же характеристикой идеального кристалла. Влияние дефектов строения на прочностные характеристики металлов не однозначно. Из представленной на рис. 6 зависимости видно, что прочность практически бездефектных кристаллов (так называемых «усов») очень высока. Увеличение количества п дефектов строения в 1 см 3 приводит к резкому снижению прочности (ветвь А ). Точка Р к характеризует прочность металлов, которые принято называть «чистыми». Дальнейшее увеличение дефектов, например, введением легирующих примесей или методами специального искажения кристаллической решетки повышает реальную прочность металлов (ветвь В ). Для создания наиболее прочных материалов стараются получить оптимальное количество дефектов. Наибольшее упроч­нение достигается при плотности дислокаций 10 12 -10 18 на 1 см 3 .

Рис. 6. Зависимость проч­ности кристаллического тела от плотности де­фектов строения

Кроме влияния на прочностные характеристики дефекты ре­шетки играют большую роль в процессах диффузии и самодиффу­зии, которые во многом определяют скорости протекания хими­ческих реакций в твердом теле, а также ионную проводимость кристаллов. Дефекты кристаллической решетки, распределенные необходимым образом по объему кристалла, позволяют создавать в одном образце области с различными типами проводимости, что является необходимым при изготовлении некоторых полупровод­никовых элементов.

6. .Виды кристаллических решеток сплава.

В технике значительно чаще применяют не чистые металлы, а сплавы, состоящие из двух или нескольких элементов, называ­емых компонентами. В качестве компонентов сплавов могут быть как чистые элементы, так и химические соединения. Широкое применение сплавов в качестве машиностроительных материалов можно объяснить тем, что они обладают разнообразным комплек­сом свойств, которые могут быть направленно изменены в зависимости от количества и вида компонентов, а также с помощью термической или других видов обработки.

Рис. 7. Виды кристаллических решеток сплавов.

а - твердый раствор замещения; б - твердый раствор внедрения; в - химическое соединение

а б

прочностью а.

где Р F 0

7. .Понятие о фазах, виды фаз.

При сплавлении ком­поненты образуют в сплаве фазы - однородные объемы, разграниченные друг от друга поверхностями раздела - границами, при переходе через которые свойства могут изменяться скачко­образно. В сплавах образуются следующие основные фазы: твер­дые растворы, химические соединения и механические смеси.

Твердые растворы являются наиболее распространенной фазой в металлических сплавах. Характерной особенностью их строения является сохранение кристаллической решетки металла-раствори­теля. Растворенные металлы могут быть распределены в ней в виде твердого раствора замещения (рис. 7, а ) в том случае, если у обоих компонентов однотипные решетки, достаточно близкие атомные радиусы и физико-химические свойства, или в виде твердого раствора внедрения (рис. 7, б ), если атомный радиус растворенного компонента достаточно мал.

Химические соединения обычно образуются между металлами и неметаллами и обладают свойствами неметаллических включе­ний, а также между металлами. При этом образуется новый тип кристаллической решетки, отличной от решеток составляющих компонентов и обладающий другими свойствами (рис.7, в). При сплавлении компонентов с весьма различными атомными радиусами и электрохимическими свойствами взаимная раствори­мость практически отсутствует. В этом случае образуется механи­ческая смесь кристаллов компонентов.

Как правило, в много­компонентных металлических сплавах можно одновременно встре­тить три вида фаз. Направленным изменением сочетания компонентов в сплавах можно изменять количество дефектов строения и, следо­вательно, управлять физико-механическими характеристи­ками.

При выборе материала для конструкции исходят из комплекса свойств, которые подразделяют на механические, физико-хими­ческие, технологические и эксплуатационные. К основным меха­ническим свойствам относят прочность, пластичность, ударную вязкость, усталостную прочность, ползучесть, твердость и износо­стойкость. Под прочностью понимают способность материала сопроти­вляться деформации или разрушению под действием статических или динамических нагрузок. При статических нагрузках произ­водят испытания на растяжение, сжатие, изгиб и кручение. Пока­зателем прочности является предел прочности образца испытуемого металла, приведенного на рис. 9, а.

где Р - нагрузка, необходимая для разрушения стандартного образца, МН; F 0 - площадь поперечного сечения образца в мм .

8. .Механические свойства конструкционных материалов.

Методы испытания механических свойств металлов.

В зависимости от способа приложения нагрузки методы испы­тания механических свойств металлов делят на три группы:

статические , когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, срез, твер­дость);

динамические , когда нагрузка возрастает с большой скоростью, ударно (испытание на удар);

испытания при повторно-переменных нагрузках , когда нагрузка в про­цессе испытания многократно изменяется по величине или по вели­чине и знаку (испытание на усталость).

Необходимость проведения испытания в различных условиях определяется различием в условиях работы деталей машин, инстру­ментов и других металлических изделий.

Испытание на растяжение . Для испытания на растяжение при­меняют цилиндрические или плоские образцы определенной формы и размеров по стандарту. Испытание образцов на растяжение про­водится на разрывных машинах с механическим или гидравличе­ским приводом. Эти машины снабжены специальным приспособле­нием, на котором при испытании (растяжении) автоматически записывается диаграмма растяжения.

Учитывая, что на характер диаграммы растяжения влияет размер образца, диаграмму строят (рис.8) в координатах напряжение σ (в Н/м 2 или кгс/мм 2) - относительное удлинение δ(в % ). При испытании на растяжение определяют следующие характе­ристики механических свойств: пределы пропорциональности, упру­гости, текучести, прочности, истинного сопротивления разрыву, относительное удлинение и сужение.


Рис. 8. Диаграмма растяжения.

Пределом пропорциональности (условным) σ пц называется такое напряжение, когда отступление от линейной зависимости между нагрузкой и удлинением достигает такой величины, при которой тангенс угла, образуемого касательной к кривой нагрузка - дефор­мация с осью нагрузок, увеличивается, например, на 25 или 50% по сравнению с первоначальным значением:

где Р пр - нагрузка, соответствующая пределу пропорциональности (условному).

Пределом упругости (условным) σ уп называется напряжение, при котором остаточное удлинение достигает 0,05% от расчетной величины образца и определяется по формуле:

где P 0,05 - нагрузка, соответствующая пределу упругости (услов­ному).

Пределом текучести (физическим) σ т называется наименьшее напряжение, при котором образец деформируется (течет) без замет­ного увеличения нагрузки:

где Р т - нагрузка, соответствующая пределу текучести (физиче­скому).

Пределом текучести (условным) σ 0,2 называется напряжение, при котором остаточное удлинение достигает 0,2 % от расчетной длины образца:

где Р 0,2 - нагрузка, соответствующая пределу текучести (услов­ному).

Пределом прочности (временным сопротивлением) σ в называется напряжение, отвечающее наибольшей нагрузке Р в, пред­шествующей разрушению образца:

Истинным сопротивлением разрушению S К называется напря­жение, определяемое отношением нагрузки Р к в момент разрыва образца к площади поперечного сечения F K образца в шейке после разрыва:

Относительным удлинением δ называется отношение абсолют­ного удлинения, т. е. приращения расчетной длины образца после разрыва (l к - l 0 ), к его первоначальной расчетной длине l 0 , выражается в процентах:

,

где l к - длина образца после разрыва.

Относительным удлинением характеризуется пла­стичность металла - это свойство твердых материалов изменять без разрушения форму и размеры под влиянием нагрузки или напряжений, устойчиво сохраняя образовавшуюся форму и раз­меры после прекращения этого влияния.

Рис.9. Испытания для определения ме­ханических характеристик:

а – предела проч­ности и пластических характеристик; б - ударной вязкости; в - твердости (по Бринеллю)

Прочность при динамических нагрузках определяют по дан­ным испытаний: на ударную вязкость - разрушением ударом стандартного образца на копре (рис.9б), на усталостную прочность - опре­деляя способность материала выдерживать, не разрушаясь, боль­шое число повторно-переменных нагрузок, на ползучесть - определяя способность нагретого материала медленно и непре­рывно деформироваться при постоянных нагрузках. Наиболее часто применяют испытания на ударную вязкость:

где А - работа, затраченная на разрушение образца, МДж; А = РН - Ph, здесь Р - вес маятника, МН; F - площадь поперечного сечения разрушаемого образца, м 2 .

Испытание на твердость. Твердостью называется способность металла сопротивляться внедрению в него другого, более твердого тела. Определение твердости является наиболее часто применяе­мым методом испытания металлов. Для определения твердости не требуется изготовления специальных образцов, т. е. испытание проводится без разрушения детали.

Существуют различные методы определения твердости - вдав­ливанием, царапанием, упругой отдачей, а также магнитный метод. Наиболее распространенным является метод вдавливания в металл стального шарика, алмазного конуса или алмазной пирамиды. Для испытания на твердость применяют специальные приборы, несложные по устройству и простые в обращении.

Твердость по Бринеллю В поверхность испытываемого металла с определенной силой вдавливают стальной закаленный шарик диаметром 10, 5 или 2,5 мм. В результате на поверхности металла получается отпе­чаток (лунка). Диаметр отпечатка изме­ряют специальной лупой с делениями. Число твердости по Бринеллю записывается латинскими буквами НВ, после которых записывается числовой показатель твердости. Например, твердость по НВ 220. Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450, так как шарик может деформироваться и результат получится неправильным. Нельзя также испытывать тонкие материалы, которые при вдавливании шарика продавли­ваются.

Твердость по Роквеллу - испытание на твердость вдавливанием конуса или шарика в поверхность испытываемого металла. Вдавливают алмазный конус с углом 120° или стальной закаленный шарик диаметром 1,59 мм Испытания шариком применяют при определении твердости мягких материалов, а алмазным конусом – при испытании твердых материалов. Число твердости по Роквеллу записывается латинскими буквами HRC, после которых записывается числовое значение твердости. Например, твердость по HRC 230.

Твердость по Виккерсу - испытание на твердость вдавливанием пирамиды. В поверх­ность металла вдавливают четырехгранную алмазную пирамиду. По нагрузке, приходящейся на единицу поверхности отпечатка, определяют число твердости, обозначаемое HV 140.

Испытание на микротвердость . Это испыта­ние применяют при определении твердости микроскопически малых объемов металла, например твердости отдельных структурных составляющих сплавов. Микротвердость определяют на специаль­ном приборе, состоящем из механизма нагружения с алмазным наконечником и металлографического микроскопа. Поверхность образца подготавливают так же, как и для микроисследования (шлифование, полирование, травление). Четырехгранная алмазная пирамида (с углом при вершине 136°, таким же, как и у пирамиды при испытании по Виккерсу) вдавливается в испытываемый материал под очень малой нагрузкой. Твердость определяется величиной Н/м 2 или кгс/мм 2 .

Износостойкость - способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

К физико-химическим свойствам материалов относятся темпе­ратура плавления, плотность, электро- и теплопроводность, коэф­фициенты линейного и объемного расширения, способность к хи­мическому взаимодействию с агрессивными средами, а также антикоррозионные свойства. Перечисленные свойства во многом определяются химическим составом компонентов сплава и их структурой.

Технологические свойства

Литейные свойства

Ковкость

Свариваемостью

Обрабатываемостью

Работоспособность конструкции определяется эксплуатацион­ными или служебными характеристиками материалов, применя­емых для их изготовления. В зависимости от условий эксплуата­ции и рабочей среды к машиностроительным материалам помимо прочностных характеристик можно предъявлять требования жаро­прочности, т. е. сохранения высоких механических характеристик при высоких температурах; коррозионной стойкости при работе в различных агрессивных средах; повышенной износостойкости, необходимой, если детали в процессе работы подвергаются исти­ранию, и т. п. В некоторых случаях материалы должны обладать способностью образовывать неразъемные соединения с помощью сварки либо пайки с другими материалами, в частности, с кера­микой, графитом и др.

9. .Технические свойства конструкционных материалов.

Технологические свойства металлов и сплавов характеризуют их способность поддаваться различным методам горячей и холод­ной обработки. К основным из них относят литейные свойства, ковкость, свариваемость и обрабатываемость режущим инстру­ментом.

Литейные свойства характеризуют способность металла или сплава заполнять литейную форму, обеспечивать получение от­ливки заданных размеров и конфигурации без пор и трещин во всех ее частях.

Ковкость - это способность металла или сплава деформиро­ваться с минимальным сопротивлением под влиянием внешней приложенной нагрузки и принимать заданную форму. Ковкость зависит от многих внешних факторов, в частности, от температуры нагрева и схемы напряженного состояния.

Свариваемостью называют способность материала образовы­вать неразъемные соединения с комплексом свойств, обеспечива­ющих работоспособность конструкции. По степени свариваемости материалы подразделяют на хорошо и ограниченно свариваемые. Свариваемость зависит как от материала свариваемых заготовок, так и от выбранного технологического процесса сварки.

Обрабатываемостью называют свойство металла поддаваться обработке резанием. Критериями обрабатываемости являются режимы резания и качество обработанной поверхности.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть вне­дрены в производство только в том случае, если их технологи­ческие свойства удовлетворяют необходимым требованиям. По­казатели технологических свойств определяют специальными испытаниями на ковкость, обрабатываемость, свариваемость, а также литейными пробами.

Работоспособность конструкции определяется эксплуатацион­ными или служебными характеристиками материалов, применя­емых для их изготовления. В зависимости от условий эксплуата­ции и рабочей среды к машиностроительным материалам помимо прочностных характеристик можно предъявлять требования жаро­прочности, т. е. сохранения высоких механических характеристик мри высоких температурах; коррозионной стойкости при работе в различных агрессивных средах; повышенной износостойкости, необходимой, если детали в процессе работы подвергаются исти­ранию, и т. п. В некоторых случаях материалы должны обладать способностью образовывать неразъемные соединения с помощью сварки либо пайки с другими материалами, в частности, с кера­микой, графитом и др.

Следовательно, при выборе материала для создания техноло­гичной конструкции необходимо комплексно учитывать его прочностные, технологические и эксплуатационные характе­ристики.

10. .Литейные сплавы.

Литейные сплавы и их применение.Литейные сплавы полу­чают сплавлением двух или нескольких металлов и неметаллов. Такие сплавы должны обладать хорошей электро- и теплопровод­ностью, повышенной пластичностью и др. Практическое значение литейных сплавов определяет то, что они по некоторым свойствам (прочности, твердости, способности воспроизводить очертания литейных форм, обрабатываемости режущим инструментом и др.) превосходят чистые металлы. Важное место в литейном произ­водстве занимают сплавы с особыми физическими свойствами (например, электропроводностью, магнитной проницаемостью и др.).

Сплавы в зависимости от химического состава отличаются друг от друга температурой плавления, химической активностью, вязкостью в расплавленном состоянии, прочностью, пластич­ностью и другими свойствами. Для производства фасонных отли­вок применяют серые, высокопрочные, ковкие и другие чугуны, углеродистые и легированные стали, сплавы алюминия, магния, меди, титана и др.

Серый чугун (состав в %: 2,8-3,5 С; 1,8-2,5 Si; 0,5- 0,8Мn; до 0,6 Р и до 0,12 S) имеет достаточно высокую прочность, высокую циклическую вязкость, легко обрабатываем и дешев. Недостатком серого чугуна является низкая ударная вязкость и хрупкость. Прочность серых чугунов обусловлена пластинчатой формой графитовых включений и прочностью металлической основы. Из серого чугуна изготовляют станины станков, корпуса и крышки редукторов, шкивы и другие отливки.

Высокопрочный чугун (состав в %: 3,2-3,6 С; 1,6-2,9 Si; 0,4-0,9 Мn; не более 0,15 Р; не более 0,02 S; не менее 0,04 Mg) обладает высокой прочностью, пластичностью, хорошо обрабаты­вается. Высокие механические свойства этих чугунов получают обработкой расплавленного чугуна магнием или церием, при которой графит принимает шаровидную форму. Из высоко­прочного чугуна получают ответственые тяжелонагруженные детали: коленчатые валы, барабаны шахтных вагонеток, шатуны и др.

Ковкий чугун (состав в %: 2,4-2,8 С; 0,8-1,4 Si; менее 1 Мn; не менее 0,2 Р; не менее 0,1 S) по прочности превосходит серые чугуны и имеет высокую пластичность. Получают ковкий чугун при отжиге отливок из белого чугуна (в белом чугуне углерод почти полностью находится в связанном состоянии в виде Fe 3 C) в течение 30-60 ч при температуре 900-1050 °С. При отжиге обра­зуется графит в виде хлопьев (рис. 6, е). В зависимости от условий отжига ковкий чугун может быть ферритным (КЧ 37-12), ферритно-перлитным (КЧ 45-6) и перлитным (КЧ 63-2). Ковкий чугун используют для производства корпусов пневматического инстру­мента, ступиц, кронштейнов, звеньев цепей и других деталей.

Углеродистые стали (состав в %: 0,12-0,6 С; 0,2-0,5 Si; 0,5-0,8 Мn; до 0,05 Р и до 0,05 S) имеют более высокие механи­ческие свойства, чем серый и ковкий чугуны. Углеродистые стали при­меняют для изготовления различных цилиндров, станин прокат­ных станов, зубчатых колес и других изделий.

Легированные стали отличаются от углеродистых составом ле­гирующих, т. е. дополнительно добавленных элементов (хром, никель, молибден, титан и др.) или повышенным содержанием марганца и кремния. Легирующие элементы придают стали высо­кую коррозионную стойкость, жаропрочность и другие специаль­ные свойства. Из легированных сталей получают турбинные лопатки, коллекторы выхлопных систем, различную арматуру и прочие подобные детали.

Алюминиевые сплавы обладают малой плотностью, высокой прочностью и пластичностью, их легко обрабатывать. Наиболее распространены сплавы алюминия с кремнием (силумины), кото­рые обладают повышенной коррозионной стойкостью, хорошей свариваемостью и другими свойствами. Алюминиевые сплавы применяют при производстве блоков цилиндров, корпусов при­боров и инструментов и т. п.

Магниевые сплавы обладают малой плотностью, высокой прочно­стью, хорошей обрабатываемостью. Недостатком магниевых сплавов является низкая коррозионная стойкость. Для повышения меха­нических свойств практически все магниевые сплавы обрабаты­вают (модифицируют) гексахлорэтаном, мелом и другими веще­ствами. Из магниевых сплавов изготовляют корпуса насосов, приборов и инструментов и другие детали.

Медные сплавы (бронзы и латуни) имеют сравнительно высо­кие механические и антифрикционные свойства, высокую коррозионную стойкость, хорошей обрабатываемостью. Для изготовле­ния отливок применяют оловянные и безоловянные бронзы и ла­туни. Безоловянные бронзы используют как заменители оловян­ных бронз.

По механическим, коррозионным и антифрикционным свой­ствам безоловянные бронзы превосходят оловянистые. Медные сплавы применяют при производстве арматуры, подшипников, гребных винтов, зубчатых колес и др.

Алюминиевые, магниевые и медные сплавы широко применяют в приборостроении.

11. .Литейные чугуны.

ЧУГУН

Чугуном называют сплавы железа с углеродом с содержа­нием более 2% С (точнее более 2,14% С)

В зависимости от состояния углерода в чугуне различают:

белый чугун , в котором весь углерод связан в цементит. В белых чугунах углерод образует с железом химическое соединение Fe 3 C, а свободный углерод находится в виде графита.

серый чугун , в котором весь углерод находится в свободном состоя­нии в виде графита или часть углерода (большая) находится в виде графита, а часть в связанном состоянии в виде цементита. Форма графита пластинчатая.

высокопрочный чугун , то же, что серый чугун, но форма графита шаровидная.

ковкий чугун , то же, что серый чугун, но форма графита хлопье­видная.

Как видно из приведенной классификации чугуна, отличитель­ной особенностью серого, высокопрочного и ковкого чугунов явля­ется наличие в структуре свободного углерода - графита. В зави­симости от формы и расположения графитных включений они в боль­шей или меньшей степени ослабляют металлическую основу, в кото­рой находятся.

Для установления комплекса механических свойств металлов образцы из исследуемого материала подвергают статическим и динамическим испытаниям.

Статическими называются испытания, при которых прилагаемая к образцу нагрузка возрастает медленно и плавно.

4.2.1. К статическим испытаниям относят испытание на растяжение, сжатие, кручение, изгиб, а также определение твердости. В результате испытаний на статическое растяжение, которое проводят на разрывных машинах, получают диаграмму растяжения (рис.4.6 а) и диаграмму условных напряжений (рис. 4.6 б) пластичного металла.

Рис. 4.6. Изменение деформации в зависимости от напряжения: а – диаграмма растяжения пластичного материала; б – диаграмма условных напряжений пластичного материала

Из графика видно, что сколь бы ни было мало приложенное напряжение, оно вызывает деформацию, причем начальные деформации являются всегда упругими и величина их находится в прямой зависимости от напряжения. На кривой, приведенной на диаграмме(рис. 4.6), упругая деформация характеризуется линией ОА и ее продолжением.

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и пластическую деформацию.

Представленная на рис. 4.6 зависимость между приложенным извне напряжением и вызванной им относительной деформацией характеризует механические свойства металлов:

Наклон прямой ОА (рис. 4.6а) показывает жесткость металла или характеристику того, как нагрузка, приложенная извне, изменяет межатомные расстояния, что в первом приближении характеризует силы межатомного притяжения; тангенс угла наклона прямой ОА пропорционален модулю упругости (Е), который численно равен частному от деления напряжения на относительную упругую деформацию (Е= s / e);

Напряжение s пц (рис. 4.6б), которое называется пределом пропорциональности, соответствует моменту появления пластической деформации. Чем точнее метод измерения деформации, тем ниже лежит точка А;

Напряжение s упр (рис. 4.1б), которое называется пределом упругости, и при котором пластическая деформация достигает заданной малой величины, установленной условиями. Часто используют значения остаточной деформации 0,001; 0,005; 0,02 и 0,05%. Соответствующие пределы упругости обозначают s 0,005, s 0,02 и т.д. Предел упругости – важная характеристика пружинных материалов, которые используют для упругих элементов приборов и машин;

Напряжение s 0,2 , которое называется условным пределомтекучести и которому соответствует пластическая деформация 0,2 %. Физический предел текучести s т определяется по диаграмме растяжения, когда на ней имеется площадка текучести. Однако при испытаниях на растяжение большинства сплавов площадки текучести на диаграммах нет Выбранная пластическая деформация 0,2 % достаточно точно характеризует переход от упругих деформаций к пластическим, а напряжение s 0,2 несложно определяется при испытаниях независимо от того, имеется или нет площадка текучести на диаграмме растяжения. Допустимое напряжение, которое используют в расчетах, выбирают обычно меньше s 0,2 в 1,5 раза;



Максимальное напряжение s в, которое называется временным сопротивлением, характеризует максимальную несущую способность материала, его прочность, предшествующую разрушению, и определяется по формуле

s в = Р max / F o

Допустимое напряжение, которое используют в расчетах, выбирают меньше s в в 2,4 раза.

Пластичность материала характеризуется относительным удлинением d и относительным сужением y:

d = [(l к – l о) / l о ] * 100,

y = [(F о – F к) / F о ] * 100,

где l о и F о – начальные длина и площадь поперечного сечения образца;

l к - конечная длина образца;

F к – площадь поперечного сечения в месте разрыва.

4.2.2. Твердость – способность материалов сопротивляться пластической или упругой деформации при внедрении в него более твердого тела, которое называется индентором.

Существует разные методы определения твердости.

Твердость по Бринеллю определяется как отношение нагрузки при вдавливании стального шарика в испытуемый материал к площади поверхности полученного сферического отпечатка (рис. 4.7а).

HB = 2P / pD ,

D – диаметр шарика, мм;

d – диаметр лунки, мм

Рис. 4.7. Схемы испытания на твердость: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

Твердость по Роквеллу определяется глубиной проникновения в испытуемый материал алмазного конуса с углом при вершине 120 о или закаленного шарика диаметром 1,588 мм (рис. 4.7.б).

Конус или шарик вдавливают двумя последовательными нагрузками:

Предварительной Р о = 10 н;

Общей Р = Р о + Р 1 , где Р 1 – основная нагрузка.

Твердость обозначается в условных единицах:

Для шкал А и С HR = 100 – (h – h o) / 0,002

Для шкалы В HR = 130 – (h – h о) / 0,002

Для определения твердости используется алмазный конус при нагрузке 60 Н (HRA), алмазный конус при нагрузке 150 Н (HRC) или стальной шарик диаметром 1,588 мм (HRB).

Твердость по Виккерсу измеряют для деталей малой толщины и тонких поверхностных слоев, полученных химико-термической обработкой.

Эта твердость определяется как отношение нагрузки при вдавливании в испытуемый материал алмазной четырехгранной пирамиды с углом между гранями 136 о к площади поверхности полученного пирамидального отпечатка (рис. 4.7.в):

HV = 2P * sin a/2 / d 2 = 1,854 P/d 2 ,

a = 136 о – угол между гранями;

d – среднее арифметическое длин обеих диагоналей, мм.

Величину HV находят по известному d согласно формуле или по расчетным таблицам согласно ГОСТ 2999-75.

Микротвердость, учитывая структурную неоднородность металла, применяют для измерения малых площадей образца. При этом вдавливают пирамиду как при определении твердости по Виккерсу, при нагрузке Р = 5-500 Н, а среднее арифметическое длин обеих диагоналей (d) измеряется в мкм. Для измерения микротвердости используется металлографический микроскоп.

4.2.3. Сопротивление материала разрушению при динамических нагрузках характеризует ударная вязкость. Её определяют (ГОСТ 9454-78) как удельную работу разрушения призматического образца с концентратором (надрезом) посередине одним ударом маятникового копра (рис. 4.8): КС = К / S o (К – работа разрушения; S o – площадь поперечного сечения образца в месте концентратора).

Рис. 4.8. Схема испытаний на ударную вязкость

Ударную вязкость (МДж/м 2) обозначают KCU, KCV и KCT. Буквы КС означают символ ударной вязкости, буквы U, V, T – вид концентратора: U-образный с радиусом надреза r н = 1 мм, V-образный с r н = 0,25 мм; T – трещина усталости, созданная в основании надреза; KCU – основной критерий ударной вязкости; KCV и KCT используют в специальных случаях.

Работа, затраченная на разрушение образца, определяется по формуле

А н = Р * l 1 (cos b - cos a),

где Р - масса маятника, кг;

l 1 – расстояние от оси маятника до его центра тяжести;

b - угол после удара;

a - угол до удара

4.2.4. Циклическая долговечность характеризует работоспособность материала в условиях многократно повторяющихся циклов напряжений. Цикл напряжений – совокупность изменения напряжения между двумя его предельными значениями s max и s min в течение периода Т (рис. 4.9).

Рис. 4.9. Синусоидальный цикл изменения напряжений

Различают симметричные циклы (R = -1) и асимметричные (R изменяется в широких пределах). Различные виды циклов характеризуют различные режимы работы деталей машин.

Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойство противостоять усталости – выносливостью (ГОСТ 23207 – 78).

На усталость деталей машин влияют ряд факторов (рис. 4.10).

Рис. 4.10. Факторы, влияющие на усталостную прочность

Разрушение от усталости по сравнению с разрушением от статической нагрузки имеет ряд особенностей:

Оно происходит при напряжениях, меньших, чем при статической нагрузке, меньших пределах текучести или временного сопротивления;

Разрушение начинается на поверхности (или вблизи от нее) локально, в местах концентрации напряжений (деформации). Локальную концентрацию напряжений создают повреждения поверхности в результате циклического нагружения либо надрезы в виде следов обработки, воздействия среды;

Разрушение протекает в несколько стадий, характеризующих процессы накопления повреждений в материале, образования трещин усталости, постепенное развитие и слияние некоторых из них в одну магистральную трещину и быстрое окончательное разрушение;

Разрушение имеет характерное строение излома, отражающее последовательность процессов усталости. Излом состоит из очага разрушения (места образования микротрещин) и двух зон – усталости и долома (рис. 4.11).

Рис. 4.11. Схема излома усталостного разрушения: 1 – очаг зарождения трещины; 2 – зона усталости; 3 – зона долома

4.3. Конструкционная прочность металлов и сплавов

Конструкционная прочность металлов и сплавов – это комплекс прочностных свойств, которые находятся в наибольшей корреляции со служебными свойствами данного изделия.

Сопротивление материала хрупкому разрушению является важнейшей характеристикой, определяющей надежность работы конструкции.

Переход к хрупкому разрушению обусловлен рядом факторов:

Природой сплава (типом решетки, химическим составом, величиной зерна, загрязнением сплава);

Особенностью конструкции (наличием концентраторов напряжений);

Условиями эксплуатации (температурным режимом, наличием нагрузки на металл).

Существует несколько критериев оценки конструкционной прочности металлов и сплавов:

Критерии, определяющие надежность металлов против внезапных разрушений (критическая температура хрупкости; вязкость разрушения; работа, поглощаемая при распространении трещины; живучесть при циклическом нагружении);

Критерии, определяющие долговечность материала (усталостная прочность; контактная выносливость; износостойкость; коррозионная стойкость).

Для оценки надежности материала используют также параметры: 1) ударную вязкость KCV и КCT; 2) температурный порог хладноломкости t 50 . Однако эти параметры только качественные, непригодные для расчета на прочность.

Параметром KCV оценивают пригодность материала для сосудов давления, трубопроводов и других конструкций повышенной надежности.

Параметр KCT, определяемый на образцах с трещиной усталости у основания надреза, более показателен. Он характеризует работу развития трещины при ударном изгибе и оценивает способность материала тормозить начавшееся разрушение. Если материал имеет KCT = 0, то это означает, что процесс его разрушения идет без затраты работы. Такой материал хрупок, эксплуатационно ненадежен. И, наоборот, чем больше параметр KCT, определенный при рабочей температуре, тем выше надежность материала в условиях эксплуатации. KCT учитывают при выборе материала для конструкций особо ответственного назначения (летательных аппаратов, роторов турбин и т. п.).

Порог хладноломкости характеризует влияние снижения температуры на склонность материала к хрупкому разрушению. Его определяют по результатам ударных испытаний образцов с надрезом при понижающейся температуре.

На переход от вязкого разрушения к хрупкому указывают изменения строения излома и резкое снижение ударной вязкости (рис.4.12), наблюдаемое в интервале температур (t в – t х) (граничные значения температур вязкого и хрупкого разрушения).

Рис. 4.12. Влияние температуры испытания на процент вязкой составляющей в изломе (В) и ударную вязкость материала KCV, KCT

Строение излома изменяется от волокнистого матового при вязком разрушении (t > t в) до кристаллического блестящего при хрупком разрушении (t < t х). Порог хладноломкости обозначают интервалом температур (t в – t н) либо одной температурой t 50 , при которой в изломе образца имеется 50 % волокнистой составляющей, и величина КСТ снижается наполовину.

О пригодности материала для работы при заданной температуре судят по температурному запасу вязкости, равному разности температуры эксплуатации и t 50 . При этом, чем ниже температура перехода в хрупкое состояние по отношению к рабочей температуре, тем больше температурный запас вязкости и выше гарантия от хрупкого разрушения.

4.4. Пути повышения прочности металлов

Принято различать техническую и теоретическую прочность. Техническую прочность определяют значением свойств: предела упругости (s 0,05); предела текучести (s 0,2); предела прочности (s в); модуля упругости (Е); предела выносливости (s R).

Под теоретической прочностью понимают сопротивление деформации и разрушению, которое должны были бы иметь материалы согласно физическим расчетам с учетом сил межатомного взаимодействия и предположения, что два ряда атомов одновременно смещаются относительно друг друга под действием напряжения сдвига.

Исходя из кристаллического строения и межатомных сил можно ориентировочно определить теоретическую прочность металла по следующей формуле:

t теор » G / 2p,

где G – модуль сдвига.

Теоретическое значение прочности, рассчитываемое по указанной формуле, в 100 – 1000 раз больше технической прочности. Это связано с дефектами в кристаллическом строении, и прежде всего с существованием дислокаций. Прочность металлов не является линейной функцией плотности дислокаций (рис. 4.13).

Рис. 4.13. Схема зависимости сопротивления деформации от плотности и других дефектов в металлах:1 – теоретическая прочность; 2-4 – техническая прочность (2 – усы; 3 – чистые неупрочненные металлы; 4 –сплавы, упрочненные легированием, наклепом, термической или термомеханической обработкой)

Как видно из рисунка 4.13, минимальная прочность определяется некоторой критической плотностью дислокаций а , приближенно составляющей 10 6 – 10 8 см -2 . Эта величина относится к отожженным металлам. Величина s 0,2 отожженных металлов составляет 10 -5 – 10 -4 G . Если а > 10 12 – 10 13 см -2 , то в этом случае могут образоваться трещины.

Если плотность дислокаций (количество дефектов) меньше величины а (рис.4.13), то сопротивление деформации резко увеличивается и прочность быстро приближается к теоретической.

Повышение прочности достигается:

Созданием металлов и сплавов с бездефектной структурой, т.е. получение нитевидных кристаллов («усов»);

Повышение плотности дефектов, в том числе дислокаций, а также структурных препятствий, затрудняющих движение дислокаций;

Создание композиционных материалов.

4.5. Влияние нагрева на строение и свойства деформированного металла (рекристаллизация)

Пластическая деформация (рис. 4.14) приводит к созданию неустойчивого состояния материала из-за возросшей внутренней энергии (внутренних напряжений). Деформирование металла сопровождается его упрочнением или так называемым наклепом . Самопроизвольно должны происходить явления, возвращающие металл в более устойчивое структурное состояние.

Рис. 4.14. Влияние нагрева на механические свойства и структуру нагартованного металла

К самопроизвольным процессам, которые приводят пластически деформированный металл к более устойчивому состоянию, относятся снятие искажения кристаллической решетки, другие внутризеренные процессы и образование новых зерен. Для снятия напряжений кристаллической решетки не требуется высокой температуры, так как при этом происходит незначительное перемещение атомов. Уже небольшой нагрев (для железа 300 –400 о С) снимает искажения решетки, а именно уменьшает плотность дислокаций в результате их взаимного уничтожения, слияния блоков, уменьшения внутренних напряжений, уменьшения количества вакансий и т.д.

Исправление искаженной решетки в процессе нагрева деформированного металла называется возвратом или отдыхом. При этом твердость металла снижается на 20-30 % по сравнению с исходным, а пластичность возрастает.

Параллельно с возвратом при температуре 0,25 – 0,3 Т пл происходит полигонизация (сбор дислокаций в стенки) и образуется ячеистая структура.

Одним из способов снятия внутренних напряжений при деформации материалов является рекристаллизация. Рекристаллизация , т.е. образование новых зерен, протекает при более высоких температурах, чем возврат, может начаться с заметной скоростью после нагрева выше определенной температуры. Чем выше чистота металла, тем ниже температура рекристаллизации. Между температурами рекристаллизации и плавления существует связь:

Т рек = а * Т пл,

где а – коэффициент, зависящий от чистоты металла.

Для технически чистых металлов а = 0,3 – 0,4, для сплавов а = 0,8.

Температура рекристаллизации имеет важное практическое значение. Чтобы восстановить структуру и свойства наклепанного металла (например, при необходимости продолжить обработку давлением путем прокатки, протяжки, волочения и т.п.), его надо нагреть выше температуры рекристаллизации. Такая обработка называется рекристаллизационным отжигом.

Процесс рекристаллизации можно разделить на два этапа:

Первичную рекристаллизацию или рекристаллизацию обработки, когда вытянутые вследствие пластической деформации зерна превращаются в мелкие округлой формы беспорядочно ориентированные зерна;

Вторичную или собирательную рекристаллизацию, заключающуюся в росте зерен и протекающую при более высокой температуре.

Первичная кристаллизация заключается в образовании новых зерен. Это обычно мелкие зерна, возникающие на поверхностях раздела крупных деформированных зерен. Хотя в процессе нагрева и происходят внутризеренные процессы устранения дефектов (возврат, отдых), все же они, как правило, полностью не заканчиваются, с другой стороны, вновь образовавшееся зерно уже свободно от дефектов.

К концу первой стадии рекристаллизации можно получить структуру, состоящую только из очень мелких зерен, в поперечнике имеющих размер в несколько микрон. Но в этот момент наступает процесс вторичной кристаллизации, заключающийся в росте зерна.

Возможны три существенно различных механизма роста зерна:

- зародышевый, состоящий в том, что после первичной кристаллизации вновь возникают зародышевые центры новых кристаллов, их рост приводит к образованию новых зерен, но их меньше, чем зерен в исходном состоянии, и поэтому после завершения процесса рекристаллизации зерна в среднем станут крупнее;

- миграционный , состоящий в перемещении границы зерна и увеличении его размеров. Крупные зерна растут за счет «поедания» мелких;

- слияние зерен , состоящее в постепенном «растворении» границ зерен и объединении многих мелких зерен в одно крупное. При этом образуется разнозернистая структура с низкими механическими свойствами.

Реализация одного из основных механизмов роста зависит:

От температуры. При низких температурах рост идет за счет слияния зерен, при высоких – за счет миграции границ зерен;

От исходного состояния (от степени деформации). При малой степени деформации (3-8%) первичная рекристаллизация затруднена, и рост зерна идет за счет слияния зерен. В конце процесса образуются гигантские зерна. При большой степени деформации (более 10 %) слияние зерен затрудняется, и рост идет за счет миграции границ зерен. Образуются более мелкие зерна. Таким образом, после отжига получается равновесная структура, изменяются механические свойства, снимается наклеп металла, повышается пластичность.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама