THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Металлы используются человеком с доисторических времен, изделия из них широко распространены в нашей жизни. Самым распространенным металлом является железо и его сплавы. К сожалению, они подвержены коррозии, или ржавлению — разрушению в результате окисления. Своевременная защита от коррозии позволяет продлить срок службы металлических изделий и конструкций.

Виды коррозии

Ученые давно борются с коррозией и выделили несколько основных ее типов:

  • Атмосферная. Происходит окисление вследствие контакта с кислородом воздуха и содержащимися в нем водяными парами. Присутствие в воздухе загрязнений в виде химически активных веществ ускоряет ржавление.
  • Жидкостная. Проходит в водной среде, соли, содержащиеся в воде, особенно морской, многократно ускоряют окисление.
  • Почвенная. Этому виду подвержены изделия и конструкции, находящиеся в грунте. Химический состав грунта, грунтовые воды и токи утечки создают особую среду для развития химических процессов.

Исходя из того, в какой среде будет эксплуатироваться изделие, подбираются подходящие методы защиты от коррозии.

Характерные типы поражения ржавчиной

Различают следующие характерные виды поражения коррозией:

  • Поверхность покрыта сплошным ржавым слоем или отдельными кусками.
  • На детали возникли небольшие участки ржавчины, проникающей в толщину детали.
  • В виде глубоких трещин.
  • В сплаве окисляется один из компонентов.
  • Глубинное проникновение по всему объему.
  • Комбинированные.

По причине возникновения разделяют также:

  • Химическую. Химические реакции с активными веществами.
  • Электрохимическую. При контакте с электролитическими растворами возникает электрический ток, под действием которого замещаются электроны металлов, и происходит разрушение кристаллической структуры с образованием ржавчины.

Коррозия металла и способы защиты от нее

Ученые и инженеры разработали множество способов защиты металлических конструкций от коррозии.

Защита от коррозии индустриальных и строительных конструкций, различных видов транспорта осуществляется промышленными способами.

Зачастую они достаточно сложные и дорогостоящие. Для защиты металлических изделий в условиях домовладений применяют бытовые методы, более доступные по цене и не связанные со сложными технологиями.

Промышленные

Промышленные методы защиты металлических изделий подразделяются на ряд направлений:

  • Пассивация. При выплавке стали в ее состав добавляют легирующие присадки, такие, как Cr, Mo, Nb, Ni. Они способствуют образованию на поверхности детали прочной и химически стойкой пленки окислов, препятствующей доступу агрессивных газов и жидкостей к железу.
  • Защитное металлическое покрытие. На поверхность изделия наносят тонкий слой другого металлического элемента - Zn , Al, Co и др. Этот слой защищает железо о т ржавления.
  • Электрозащита. Рядом с защищаемой деталью размещают пластины из другого металлического элемента или сплава, так называемые аноды. Токи в электролите текут через эти пластины, а не через деталь. Так защищают подводные детали морского транспорта и буровых платформ.
  • Ингибиторы. Специальные вещества, замедляющие или вовсе останавливающие химические реакции.
  • Защитное лакокрасочное покрытие.
  • Термообработка.

Способы защиты от коррозии, используемые в индустрии, весьма разнообразны. Выбор конкретного метода борьбы с коррозией зависит от условий эксплуатации защищаемой конструкции.

Бытовые

Бытовые методы защиты металлов от коррозии сводятся, как правило, к нанесению защитных лакокрасочных покрытий. Состав их может быть самый разнообразный, включая:

  • силиконовые смолы;
  • полимерные материалы;
  • ингибиторы;
  • мелкие металлические опилки.

Отдельной группой стоят преобразователи ржавчины — составы, которые наносят на уже затронутые коррозией конструкции. Они восстанавливают железо из окислов и предотвращают повторную коррозию. Преобразователи делятся на следующие виды:

  • Грунты. Наносятся на зачищенную поверхность, обладают высокой адгезией. Содержат в своем составе ингибирующие вещества, позволяют экономить финишную краску.
  • Стабилизаторы. Преобразуют оксиды железа в другие вещества.
  • Преобразователи оксидов железа в соли.
  • Масла и смолы, обволакивающие частички ржавчины и нейтрализующие ее.

При выборе грунта и краски лучше брать их от одного производителя. Так вы избежите проблем совместимости лакокрасочных материалов.

Защитные краски по металлу

По температурному режиму эксплуатации краски делятся на две большие группы:

  • обычные, используемые при температурах до 80 °С;
  • термостойкие.

По типу связующей основы краски бывают:

  • алкидные;
  • акриловые;
  • эпоксидные.

Лакокрасочные покрытия по металлу имеют следующие достоинства:

  • качественная защита поверхности от коррозии;
  • легкость нанесения;
  • быстрота высыхания;
  • много разных цветов;
  • долгий срок службы.

Большой популярностью пользуются молотковые эмали, не только защищающие метал, но и создающие эстетичный внешний вид. Для обработки металла распространена также краска-серебрянка. В ее состав добавлена алюминиевая пудра. Защита металла происходит за счет образования тонкой пленки окиси алюминия.

Эпоксидные смеси из двух компонентов отличаются исключительной прочностью покрытия и применяются для узлов, подверженных высоким нагрузкам.

Защита металла в бытовых условиях

Чтобы надежно защитить металлические изделия от коррозии, следует выполнить следующую последовательность действий:

  • очистить поверхность от ржавчины и старой краски с помощью проволочной щетки или абразивной бумаги;
  • обезжирить поверхность;
  • сразу же нанести слой грунта;
  • после высыхания грунта нанести два слоя основной краски.

При работе следует использовать средства индивидуальной защиты:

  • перчатки;
  • респиратор;
  • очки или прозрачный щиток.

Способы защиты металлов от коррозии постоянно совершенствуются учеными и инженерами.

Методы противостояния коррозионным процессам

Основные методы, применяемые для противодействия коррозии, приведены ниже:

  • повышение способности материалов противостоять окислению за счет изменения его химического состава;
  • изоляция защищаемой поверхности от контакта с активными средами;
  • снижение активности окружающей изделие среды;
  • электрохимические.

Первые две группы способов применяются во время изготовления конструкции, а вторые – во время эксплуатации.

Методы повышения сопротивляемости

В состав сплава добавляют элементы, повышающие его коррозионную устойчивость. Такие стали называют нержавеющими. Они не требуют дополнительных покрытий и отличаются эстетичным внешним видом. В качестве добавок применяют никель, хром, медь, марганец, кобальт в определенных пропорциях.

Стойкость материалов к ржавлению повышают также, удаляя их состава ускоряющие коррозию компоненты, как, например, кислород и серу — из стальных сплавов, а железо – из магниевых и алюминиевых.

Снижение агрессивности внешней среды и электрохимическая защита

С целью подавления процессов окисления во внешнюю среду добавляют особые составы — ингибиторы. Они замедляют химические реакции в десятки и сотни раз.

Электрохимические способы сводятся к изменению электрохимического потенциала материала путем пропускания электрического тока. В результате коррозионные процессы сильно замедляются или даже вовсе прекращаются.

Пленочная защита

Защитная пленка препятствует доступу молекул активных веществ к молекулам металла и таким образом предотвращают коррозионные явления.

Пленки образуются из лакокрасочных материалов, пластмассы и смолы. Лакокрасочные покрытия недороги и удобны в нанесении. Ими покрывают изделие в несколько слоев. Под краску наносят слой грунта, улучшающего сцепление с поверхностью и позволяющего экономить более дорогую краску. Служат такие покрытия от 5 до 10 лет. В качестве грунта иногда применяют смесь фосфатов марганца и железа.

Защитные покрытия создают также из тонких слоев других металлов: цинка, хрома, никеля. Их наносят гальваническим способом.

Покрытие металлом с более высоким электрохимическим потенциалом, чем у основного материала, называется анодным. Оно продолжает защищать основной материал, отвлекая активные окислители на себя, даже в случае частичного разрушения. Покрытия с более низким потенциалом называют катодными. В случае нарушения такого покрытия оно ускоряет коррозию за счет электрохимических процессов.

Металлическое покрытие также можно наносить также методом распыления в струе плазмы.

Применяется также и совместный прокат нагретых до температуры пластичности листов основного и защищающего металла. Под давлением происходит взаимная диффузия молекул элементов в кристаллические решетки друг друга и образование биметаллического материала. Этот метод называют плакированием.

Под воздействием внешних факторов (жидкости, газы, агрессивные химические соединения) разрушаются любые материалы. Не являются исключением и металлы. Коррозийные процессы нейтрализовать полностью невозможно, но вот снизить их интенсивность, повысив тем самым эксплуатационный срок металлоконструкций или иных, в состав которых входит «железо», вполне возможно.

Способы антикоррозийной защиты

Все способы защиты от коррозии можно условно классифицировать как методики, которые применимы или до начала эксплуатации образца (группа 1), или уже после его ввода в строй (группа 2).

Первая

  • Повышение сопротивляемости «химическому» воздействию.
  • Исключение прямого контакта с агрессивными веществами (изоляция поверхностная).

Вторая

  • Снижение степени агрессивности окружающей среды (в зависимости от условий эксплуатации).
  • Использование ЭМ полей (к примеру, «наложение» внешних эл/токов, регулирование их плотности и ряд других методик).

Применение того или иного способа защиты определяется индивидуально для каждой конструкции и зависит от нескольких факторов:

  • вид металла;
  • условия его эксплуатации;
  • сложность проведения антикоррозийных мероприятий;
  • производственные возможности;
  • экономическая целесообразность.

В свою очередь, все методики подразделяются на активные (подразумевающие постоянное «воздействие» на материал), пассивные (которые можно охарактеризовать как многоразового применения) и технологические (использующиеся на этапе изготовления образцов).

Активные

Катодная защита

Целесообразно использовать, если среда, с которой контактирует металл – электропроводящая. На материал подается (систематически или постоянно) большой «минусовой» потенциал, который делает в принципе невозможным его окисление.

Протекторная защита

Заключается в катодной поляризации. Образец связывается контактом с материалом, который более подвержен окислению в данной токопроводящей среде (протектором). По сути, он является своего рода «громоотводом», принимая на себя весь «негатив», который создают агрессивные вещества. Но такой протектор нуждается в периодической замене на новый.

Поляризация анодная

Применяется крайне редко и заключается в поддержании «инертности» материала по отношению к внешним воздействиям.

Пассивные (поверхностная обработка металла)

Создание защитной пленки

Одна из самых распространенных и малозатратных методик борьбы с коррозией. Для создания поверхностного слоя используются вещества, которые должны соответствовать следующим основным требованиям – быть инертными по отношению к агрессивным хим/соединениям, не проводить эл/ток и обладать повышенной адгезией (хорошо скрепляться с основой).

Все используемые вещества в момент обработки металлов находятся в жидком или «аэрозольном» состоянии, от чего зависит и способ их нанесения – окраска или напыление. Для этого применяются лакокрасочные составы, различные мастики и полимеры.

Прокладка металлоконструкций в защитных «желобах»

Это характерно для разного вида трубопроводов и коммуникаций инженерных систем. В данном случае роль изолятора играет воздушная «прослойка» между внутренними стенками канала и поверхностью металла.

Фосфатирование

Металлы подвергаются обработке специальными средствами (окислителями). Они вступают с основой в реакцию, в результате чего на ее поверхности происходит отложение малорастворимых хим/соединений. Довольно эффективный способ защиты от влаги.

Покрытие более устойчивыми материалами

Примерами использования такой методики служат часто встречающиеся в быту изделия с хромировкой (), с серебрением, «оцинковкой» и тому подобное.

Как вариант – защита керамикой, стеклом, покрытие бетоном, цементными растворами (обмазка) и так далее.

Пассивация

Смысл заключается в том, чтобы резко снизить химическую активность металла. Для этого производится обработка его поверхности соответствующими спецреактивами.

Снижение агрессивности среды

  • Использование веществ, которые снижают интенсивность коррозийных процессов (ингибиторов).
  • Осушка воздуха.
  • Его хим/очистка (от вредных примесей) и ряд других методик, которые могут применяться и в быту.
  • Гидрофобизация почвы (засыпки, введение в нее спецвеществ) с целью снижения агрессивности грунта.

Обработка ядохимикатами

Используется в случаях, когда есть вероятность развития так называемой «биокоррозии».

Технологические способы защиты

Легирование

Самый известный способ. Смысл в том, чтобы на основе металла создать сплав, инертный по отношению к агрессивным воздействиям. Но реализуется только в промышленных масштабах.

Как следует из приведенной информации, не все методики антикоррозийной защиты можно применять в быту. В этом плане возможности «частника» существенно ограничены.

Основным условием противокоррозийной защиты металлов и сплавов является уменьшение скорости коррозии. Уменьшить скорость коррозии можно, используя различные методы защиты металлических конструкций от коррозии. Основными из них являются:

1 Защитные покрытия.

2 Обработка коррозионной среды с целью снижения коррозионной активности (в особенности при постоянных объемах коррозионных сред).

3 Электрохимическая защита.

4 Разработка и производство новых конструкционных материалов повышенной коррозионной устойчивости.

5 Переход в ряде конструкций от металлических к химически стойким материалам (пластические высокомолекулярные материалы, стекло, керамика и др.).

6 Рациональное конструирование и эксплуатация металлических сооружений и деталей.


1. Защитные покрытия

Защитное покрытие должно быть сплошным, равномерно распределенным по всей поверхности, непроницаемым для окружающей среды, иметь высокую адгезию (прочность сцепления) к металлу, быть твердым и износостойким. Коэффициент теплового расширения должен быть близким к коэффициенту теплового расширения металла защищаемого изделия.

Классификация защитных покрытий представлена на рис. 43

Защитные покрытия


Неметаллические Металлические покрытия покрытия

НеорганическиеОрганическиеКатодныеАнодные


Рисунок 43 - Схема классификации защитных покрытий

1.1 Металлические покрытия

Нанесение защитных металлических покрытий – один из самых распространенных методов борьбы с коррозией. Эти покрытия не только защищают от коррозии, но и придают их поверхности ряд ценных физико-механических свойств: твердость, износоустойчивость, электропроводность, паяемость, отражательную способность, обеспечивают изделиям декоративную отделку и т.д.

По способу защитного действия металлические покрытия делят на катодные и анодные.

Катодные покрытия имеют более положительный, а анодные - более электроотрицательный электродные потенциалы по сравнению с потенциалом металла, на который они нанесены. Так, например, медь, никель, серебро, золото, осажденные на сталь, являются катодными покрытиями, а цинк и кадмий по отношению к этой же стали – анодными покрытиями.

Необходимо отметить, что вид покрытия зависит не только от природы металлов, но и от состава коррозионной среды. Олово по отношению к железу в растворах неорганических кислот и солей играет роль катодного покрытия, а в ряде органических кислот (пищевых консервах) служит анодом. В обычных условиях катодные покрытия защищают металл изделия механически, изолируя его от окружающей среды. Основное требование к катодным покрытиям – беспористость. В противном случае при погружении изделия в электролит или при конденсации на его поверхности тонкой пленки влаги обнаженные (в порах или трещинах) участки основного металла становятся анодами, а поверхность покрытия катодом. В местах несплошностей начнется коррозия основного металла, которая может распространяться под покрытие (рис. 44 а).


Рисунок 11 Схема коррозии железа с пористым катодным (а) и анодным (б) покрытием

Анодные покрытия защищают металл изделия не только механически, но главным образом электрохимически. В образовавшемся гальваническом элементе металл покрытия становится анодом и подвергается коррозии, а обнаженные (в порах) участки основного металла выполняют роль катодов и не разрушаются, пока сохраняется электрический контакт покрытия с защищаемым металлом и через систему проходит достаточный ток (рис.4 б). Поэтому степень пористости анодных покрытий в отличие от катодных не играет существенной роли.

В отдельных случаях электрохимическая защита может иметь место при нанесении катодных покрытий. Это происходит, если металл покрытия по отношению к изделию является эффективным катодом, а основной металл склонен к пассивации. Возникающая анодная поляризация пассивирует незащищенные (в порах) участки основного металла и затрудняет их разрушение. Такой вид анодной электрохимической защиты проявляется для медных покрытий на сталях 12Х13 и 12Х18Н9Т в растворах серной кислоты.

Основной метод нанесения защитных металлических покрытий – гальванический. Применяют также термодиффузионный и механотермический методы, металлизацию распылением и погружением в расплав.Разберем каждый из методов более подробно.

1.2 Гальванические покрытия.

Гальванический метод осаждения защитных металлических покрытий получил очень широкое распространение в промышленности. По сравнению с другими способами нанесения металлопокрытий он имеет ряд серьезных преимуществ: высокую экономичность (защита металла от коррозии достигается весьма тонкими покрытиями), возможность получения покрытий одного и того же металла с различными механическими свойствами, легкую управляемость процесса (регулирование толщины и свойств металлических осадков путем изменения состава электролита и режима электролиза), возможность получения сплавов разнообразного состава без применения высоких температур, хорошее сцепление с основным металлом и др.

Недостаток гальванического метода – неравномерность толщины покрытия на изделиях сложного профиля.

Электрохимическое осаждение металлов проводят в гальванической ванне постоянного тока (рис 45). Покрываемое металлом изделие завешивают на катод. В качестве анодов используют пластины из осаждаемого металла (растворимые аноды) или из материала, нерастворимого в электролите (нерастворимые аноды).

Обязательный компонент электролита – ион металла, осаждающийся на катоде. В состав электролита могут также входить вещества, повышающие его электропроводность, регулирующие протекание анодного процесса, обеспечивающие постоянство рН, поверхностно-активные вещества, повышающие поляризацию катодного процесса, блескообразующие и выравнивающие добавки и др.


Рисунок 5 Гальваническая ванна для электроосаждения металлов:

1 – корпус; 2 – вентиляционный кожух; 3 – змеевик для обогрева; 4 – изоляторы; 5 – анодные штанги; 6 – катодные штанги; 7 – барботер для перемешивания сжатым воздухом

В зависимости от того, в каком виде ион разряжающегося металла находится в растворе, все электролиты делятся на комплексные и простые. Разряд комплексных ионов на катоде происходит при более высоком перенапряжении, чем разряд простых ионов. Поэтому осадки, полученные из комплексных электролитов, более мелкозернисты и равномерны по толщине. Однако у этих электролитов ниже выход металла по току и более низкие рабочие плотности тока, т.е. по производительности они уступают простым электролитам, в которых ион металла находится в виде простых гидратированных ионов.

Распределение тока по поверхности изделия в гальванической ванне никогда не бывает равномерным. Это приводит к разной скорости осаждения, а следовательно, и толщине покрытия на отдельных участках катода. Особенно сильный разброс по толщине наблюдается на изделиях сложного профиля, что отрицательно сказывается на защитных свойствах покрытия. Равномерность толщины осаждаемого покрытия улучшается с увеличением электропроводности электролита, ростом поляризации с ростом плотности тока, уменьшением выхода металла по току при повышении плотности тока, увеличении расстояния между катодом и анодом.

Способность гальванической ванны давать равномерные по толщине покрытия на рельефной поверхности называется рассеивающей способностью. Наибольшей рассеивающей способностью обладают комплексные электролиты.

Для защиты изделий от коррозии используют гальваническое осаждение многих металлов: цинка, кадмия, никеля, хрома, олова, свинца, золота, серебра и др. Применяют также электролитические сплавы, например Cu – Zn, Cu – Sn, Sn – Bi и многослойные покрытия.

Наиболее эффективно (электрохимически и механически) защищают черные металлы от коррозии анодные покрытия цинком и кадмием.

Цинковые покрытия применяются для защиты от коррозии деталей машин, трубопроводов, стальных листов. Цинк – дешевый и доступный металл. Он защищает основное изделие механическим и электрохимическим способами, так как при наличии пор или оголенных мест происходит разрушение цинка, а стальная основа не корродирует.

Покрытия из цинка занимают доминирующее положение. С помощью цинка защищают от коррозии примерно 20 % всех стальных деталей, и около 50% производимого в мире цинка расходуется на гальванические покрытия.

В последние годы получили развитие работы по созданию защитных гальванических покрытий из сплавов на основе цинка: Zn – Ni (8 – 12% Ni), Zn – Fe, Zn – Co (0,6 – 0,8% Co). При этом удается повысить коррозионную стойкость покрытия в 2-3 раза.

Коррозия – самопроизвольный процесс и соответственно протекающий с уменьшением энергии Гиббса системы. Химическая энергия реакции коррозионного разрушения металлов выделяется в виде теплоты и рассеивается в окружающем пространстве.

Коррозия приводит к большим потерям в результате разрушения трубопроводов, цистерн, металлических частей машин, корпусов судов, морских сооружений и т. п. Безвозвратные потери металлов от коррозии составляют 15 % от ежегодного их выпуска. Цель борьбы с коррозией – это сохранение ресурсов металлов, мировые запасы которых ограничены. Изучение коррозиии разработка методов защиты металлов от нее представляют теоретический интерес и имеют большое народнохозяйственное значение.

Ржавление железа на воздухе, образование окалины при высокой температуре, растворение металлов в кислотах – типичные примеры коррозии. В результате коррозии многие свойства металлов ухудшаются: уменьшается прочность и пластичность, возрастает трение между движущимися деталями машин, нарушаются размеры деталей. Различают химическую и электрохимическую коррозию.

Химическая, коррозия – разрушение металлов путем их окисления в сухих газах, в растворах неэлектролитов. Например, образование окалины на железе при высокой температуре. В этом случае образующиеся на металле оксидные плёнки часто препятствуют дальнейшему окислению, предотвращая дальнейшее проникновение к поверхности металла как газов, так и жидкостей.

Электрохимической коррозией называют разрушение металлов под действием возникающих гальванических пар в присутствии воды или другого электролита. В этом случае наряду с химическим процессом – отдача электронов металлами, протекает и электрический процесс – перенос электронов от одного участка к другому.

Этот вид коррозии подразделяют на отдельные виды: атмосферную, почвенную, коррозию под действием «блуждающего» тока и др.

Электрохимическую коррозию вызывают примеси, содержащиеся в металле, или неоднородность его поверхности. В этих случаях при соприкосновении металла с электролитом, которым может быть и влага, адсорбируемая на воздухе, на его поверхности возникает множество микрогальванических элементов. Анодами являются частицы металла, катодами – примеси и участки металла, имеющие более положительный электродный потенциал. Анод растворяется, а на катоде выделяется водород. В то же время на катоде возможен процесс восстановления кислорода, растворённого в электролите. Следовательно, характер катодного процесса будет зависеть от некоторых условий:



кислая среда : 2Н + + 2ē = Н 2 (водородная деполяризация),

О 2 + 4Н + + 4ē → 2Н 2 О

нейтральная среда : O 2 +2H 2 O+4e − =4OH − (кислородная деполяризация).

В качестве примера рассмотрим атмосферную коррозию железа в контакте с оловом. Взаимодействие металлов с каплей воды, содержащей кислород, приводит к возникновению микрогальванического элемента, схема которого имеет вид

(-)Fe|Fe 2+ || O 2 , H 2 O| Sn (+).

Более активный металл (Fе) окисляется, отдавая электроны атомам меди и переходит в раствор в виде ионов (Fe 2+). На катоде протекает кислородная деполяризация.

Способы защиты от коррозии. Все методы защиты от коррозии можно условно разделить на две большие группы: неэлектрохимические (легирование металлов, защитные покрытия, изменение свойств коррозионной среды, рациональное конструирование изделий) и электрохимические (метод проектов, катодная защита, анодная защита).

Легирование металлов – это эффективный, хотя и дорогой метод повышения коррозионной стойкости металлов, при котором в состав сплава вводят компоненты, вызывающие пассивацию металла. В качестве таких компонентов применяют хром, никель, титан, вольфрам и др.

Защитные покрытия – это слои, искусственно создаваемые на поверхности металлических изделий и сооружений. Выбор вида покрытия за- висит от условий, в которых используется металл.

Материалами для металлических защитных покрытий могут быть чистые металлы: цинк, кадмий, алюминий, никель, медь, олово, хром, серебро и их сплавы: бронза, латунь и т. д. По характеру поведения металлических покрытий при коррозии их можно разделить на катодные (например, на стали Cu, Ni, Ag) и анодные (цинк на стали). Катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. В случае анодного покрытия защищаемый металл играет роль катода и поэтому не корродирует. Но потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия. Так, покрытие стали оловом в растворе H 2 SO 4 – катодное, а в растворе органических кислот – анодное.

Неметаллические защитные покрытия могут быть как неорганическими, так и органическими. Защитное действие таких покрытий сводится в основном к изоляции металла от окружающей среды.

Электрохимический метод защиты основан на торможении анодных или катодных реакций коррозионного процесса. Электрохимическая защита осуществляется присоединением к защищаемой конструкции (корпус судна, подземный трубопровод), находящейся в среде электролита (морская, почвенная вода), металла с более отрицательным значением электродного потенциала – протектора .

Человечество за десятки сотен лет возвело вокруг себя большое множество техники. Но стартом для такого широкого развития послужила эпоха, когда люди научились добывать и обрабатывать металл. Благодаря его свойствам стало возможным достигать больших вершин в технике, строить транспортные средства, которые могли доставлять человека на другой конец мира, оружие, чтобы защищается. Но сейчас техника дошла до такого уровня, что одни механизмы создают другие.

Несмотря на то, что в центре всей (или почти всей) техники находится металл, это не самый совершенный материал. С течением времени и влияния на него окружающей средой, он поддается ржавлению. Это явление наносит большей вред данному материалу, и как следствие – ухудшает работу техники, что часто может привести к аварии или катастрофе. В этой статье будет указано все о ржавеющей стали, как происходит этот процесс, и что делать, чтобы его избежать (или устранить).

Что такое ржавчина?

«Ржавчина» – так называют любые виды разрушения этого материала в быту. Если говорить конкретно, то это те покраснения, которые образовываются на металле после реакции с кислородом. Окисление пагубно влияет на этот материал, делая его хрупким, грани – рыхлыми, и уменьшают его твердость, как и эксплуатационные характеристики.

Поэтому на многих заводах используют разные составы для уменьшения трения, защиты от коррозии и других негативных воздействий окружающей среды. Об этом немного позже. Чтобы перейти к защите от такого воздействия, нежно разобраться с тем, как «гниение» влияет на сталь, и как убивает ее кристаллическую решетку.

Природное разрушение может наносить самые разные повреждения:

В зависимости от характера повреждении, могут принимается разные методы борьбы с коррозией. Каждый из возможных повреждений вредит по-своему, и неприемлем в различных направлениях техники и производства. В энергетике подобные разрушения непозволительна вообще (это может привести к утечкам газа, распространению радиации, и так далее).

Видео ролик о том, что такое ржавчина и как от нее защищаться:

Воздействие ржавчины

Чтобы эффективно подбирать механизмы противодействия разрушению структуры металла, необходимо понять, как действует само ржавление. Она может быть двух видов: химической и электрохимической.

К первой – химической – можно отнести процесс того, как грань образца уничтожается просто под воздействием окружающей среды (газами чаще всего). Такая ржавчина на металле образуется за очень долгое время, и как правило, ее весьма легко избежать. Деталь необходимо чистить и наносить антикоррозионные покрытия (краски, лаки и так далее).

Кроем этого, такой процесс порчи железа возникает в влажных, мокрых средах, а также при контакте с органическими веществами, типа нефти, например. Последний случай особенно важно учитывать, так как ржавчина на нефтяных вышках недопустима.

Электрохимическая коррозия более редкая, и происходит в электролитах. Только в данном случае важна не среда, а ток, который производится в результате электризации. Именно он и разрушает металл и его поверхность (по большей части). Поэтому отличить ее можно легко по рассыпчатой поверхности металла.

Чтобы защитить металл от ржавчины нужно учитывать все эти особенности.

Как создать правильную защиту?

Коррозия металлов и способы защиты тесно связаны между собой. Поэтому все процессы защиты можно разделить на всего лишь две группы: улучшение металла во время производства, и нанесение защиты в процессе эксплуатации. К первому можно отнести изменения химического состава, который сделает деталь более стойкой к окружающему влиянию. Такую технику или предметы не нужно дополнительно защищать.

Ко второй же группе защити можно отнести различные покрытия и изоляции рабочего процесса. Избежать разрушения можно несколькими способами: избежать среды, которая ее провоцирует, или добавить что-то, что поможет избавится от распространения порчи металла, вне зависимости от среды и окружения. В домашних условиях возможен только второй вариант, так как повлиять уже готовое изделие человек без специального оборудования, печи и прочего, просто не может.

Как подготовится к воздействию ржавчины

Во время создания металлических изделий, есть два способа, как убрать коррозию или свести к минимуму ее появление. Для этого в структуру либо добавляют вещества (цинк, медь и так далее), которые стойкие к воздействию газов и других негативных раздражителей. Также часто можно встретить обратный эффект.

Как уже упоминалось, есть такой тип коррозии, как избирательный. Он разрушает определенные элементы в складе элементов. Как известно, металл состоит из разных атомов, которые образуют элементы, каждый из которых в разной степени поддается негативным воздействиям. Например, в железе это сера. Чтобы деталь из этого материала служила как можно дольше, из ее химического состава удаляется сера, из которой начинается избирательное разъединение структуры. В домашних условиях такой надежный способ невозможен.

Еще одна антикоррозионная защита может быть при производстве. При производстве наносятся специальные покрытия, которые будут защищать поверхность от внешних повреждений от химической реакции. Конструкционные материалы, которые используются при этом, могут быть только на производстве, так как в общем доступе их приобрести почти нельзя. К тому же, такое нанесение часто производится на автоматических линиях, что повышает надежность и скорость покрытия материала.

Но как бы металл не усовершенствовался, этот материал все равно будет поддаваться негативному давлению со стороны влажности, воздуха, разных газов и в процессе эксплуатации будет портится. Поэтому необходима антикоррозионная защита, которая будет не только влиять на него, но и защищать его от внешнего мира.

Очень сильно на распространение ржавчины влияет кислород. Защита металлов от коррозии также является замедление, а не только предотвращение, распространения такого негативного явления. Для этого в структуру окружающей среды вводятся специальные молекулы – ингибиторы – которые, приникая в поверхность металла, обеспечивают своего рода щит для него.

Также часто используется антикоррозийная пленка, которая может наносится разными способами. Но проще всего (и надежнее), когда ее наносят путем распыления. Используют для этого различные полимерные материалы, краски, эмали и подобное. Они также обволакивают деталь, и ограничивают к нему доступ разрушительной среды. Борьба с коррозией металла может быть самой разнообразной, несмотря на схожесть в процессе. Этот химический процесс неизбежен, и практически всегда достигает цели. Поэтому так много усилий и уходит на то, чтобы предотвратить коррозию. Способы защиты в виду этого могут комбинироваться.

Это основные методы защиты. Они популярны из-за простоты, надежности и удобства. К ним также можно отнести покрытие лаками и эмалями, но про это немного ниже.

Так, например, перед нанесением краски или эмали, работники смазывают изделие грунтовкой, чтобы краска лучше «легла» на поверхность, и между ней и изделием не осталось влаги (которую грунтовка вбирает). Эти методы защиты металлов от коррозии не всегда делаются на производстве. Домашних инструментов вполне хватит, чтобы сделать такие операции самостоятельно.

Антикоррозионная защита порой бывает весьма необычной. Например, когда один металл защищен другим. К такому приему часто прибегают, когда химический сплав нельзя изменить. Его поверхность покрывается другим материалом, который переполнен вкраплениями элементов, неподдающихся коррозийным воздействиям. Это так называемым антикоррозийный слой помогает очень надежно сохранить поверхность более чувствительного материала. К примеру, покрытие может быть из хрома.

К подобному относят и протекторную защиту металлов от коррозии. В данном случае защищаемая поверхность покрывается металлом, у которого низкая проводимость электричества (которое является одной из основных причин коррозии). Но это применяется тогда, когда контакт с окружающей средой сводится к минимуму. Поэтому подобная защита металлов от ржавчины и других опасных химических процессов, используется в комбинации, например, с ингибиторами.

Такие способы защиты применяются для того, чтобы избежать механических воздействий. То, как защитить металл надежнее всего – сказать сложно. Каждый метод может давать свои положительные результаты.

Как добиться качественного покрытия?

Не всегда защиты металла от коррозии ложится на плечи производителей. Часто заботиться о таком изделии нужно самостоятельно, и тогда лучшей схемой усовершенствования стойкости детали становится нанесение покрытия.

Первым делом, оно должно быть полностью чистым. К «грязи» можно отнести:

  • Остатки масла
  • Окислы

Устранять их нужно правильно и полностью. К примеру, нужно брать специальную жидкость на основе спирта или бензина, чтобы вода дополнительно не повредила структуру. К тому же, влажность на поверхности может остаться, и нанесенная поверх нее краска попросту не будет выполнять свои функции.

В замкнутой среде (между поверхностью и краской) коррозия железа будет развивается еще активнее, поэтому такая защита металла от коррозии скорее нанесет ему вред, чем поможет. Поэтому важно избегать также и влаги. После устранения грязи необходимо просушить его.

После этого можно наносить необходимое покрытие. Но все же это лучший способ защиты от ржавчины в домашних условиях. Хоть способы защиты от коррозии металлов могут быть разными, всегда нужно помнить, что неправильное их использование может привести к неприятностям. Поэтому не нужно придумывать что-то неординарное, лучше использовать уже проверенные и надежные методы защиты от коррозии металлов.

Также стоит отметить, что поверхность агрегата может быть обработана несколькими способами:

  • Химическими
  • Электрохимическим
  • Механическим

Последний является самым простым методом того, как остановить коррозию. Первые два пункта из списка представляют собой более сложные (в техническом плане) процессы, от чего антикоррозионная защита становится надежнее. Ведь они обезжиривают металл, что делает его более удобным для нанесения на него защитного покрытия. До покрытия должно пройти не более 6-7 часов, так как за это время контакт со средой «восстановит» предыдущий результат, который был до обработки.

Защита от коррозии должна производится – по большей части – на заводе и при производстве. Но не нужно полагаться только на нее. Домашнее средство от коррозии также не повредит.

Можно ли навсегда избавится от коррозии?

Несмотря на простоту ответа, он должен быть развернутым. Коррозию и защиту металлов от коррозии нельзя отделять друг от друга, так как в их основе лежит химический состав как самого изделия, так и его окружающей атмосферы. Не зря способы борьбы с коррозией основываются именно на этих показателях. Они либо убирают «слабые» частицы кристаллической решетки (либо добавляют в нее более надежные вкрапления), либо же помогают «спрятать» поверхность изделия от газов и воздействий извне.

Антикоррозионная защита не являет собой ничего хитрого. В ее основе простая химия, и законы физики, которые также указывают на то, избежать каких-либо процессов во взаимодействии элементов невозможно. Противокоррозионная защита уменьшает вероятность развития такого исхода, повышает долговечность металла, но все же – окончательно его не спасает. Какой бы ни была она, ее все равно нужно обновлять, улучшать и комбинировать, и использовать дополнительные способы защиты металлов от коррозии.

Сказать, как предотвратить коррозию можно, но вот стремится к тому, чтобы железо вообще было ей не подвластно – не стоит. Покрытие также поддается разрушительной силе окружающего мира, и, если за этим не следить, газы и влажность доберутся и до защищенной поверхности, который под ней прячется. Коррозия и защита металлов крайне необходима (как на производстве, так и в процессе эксплуатации), но к ней тоже нужно относится с умом.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама