THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Атомная электростанция (АЭС) - комплекс технических сооружений , предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции.

В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции - ядерном реакторе.

Реактор смонтирован в стальном корпусе, рассчитанном на высокое давление - до 1,6 х 107 Па, или 160 атмосфер.
Основными частями ВВЭР-1000 являются:

1. Активная зона, где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия.
2. Отражатель нейтронов, окружающий активную зону.
3. Теплоноситель.
4. Система управления защиты (СУЗ).
5. Радиационная защита.

Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы - ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки - ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны - например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Схема станции - двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является некипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты - сильного поглотителя нейтронов, что используется для регулирования мощности реактора.

1. Главными циркуляционными насосами вода прокачивается через активную зону реактора, где она нагревается до температуры 320 градусов за счет тепла, выделяемого при ядерной реакции.
2. Нагретый теплоноситель отдает свою теплоту воде второго контура (рабочему телу), испаряя ее в парогенераторе.
3. Охлажденный теплоноситель вновь поступает в реактор.
4. Парогенератор выдает насыщенный пар под давлением 6,4 МПа, который подается к паровой турбине.
5. Турбина приводит в движение ротор электрогенератора.
6. Отработанный пар конденсируется в конденсаторе и вновь подается в парогенератор конденсатным насосом. Для поддержания постоянного давления в контуре установлен паровой компенсатор объема.
7. Теплота конденсации пара отводится из конденсатора циркуляционной водой, которая подается питательным насосом из пруда охладителя.
8. И первый, и второй контур реактора герметичны. Это обеспечивает безопасность работы реактора для персонала и населения.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).

Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором.
Аварийная защита ядерного реактора - совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты . Например, современные варианты реакторов ВВЭР включают "Систему аварийного охлаждения активной зоны" (САОЗ) - специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно "Правилам ядерной безопасности реакторных установок атомных станций", по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.
Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:
1. По плотности нейтронного потока - не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока - не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:
1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

А́ТОМНАЯ ЭЛЕКТРОСТА́НЦИЯ (АЭС), элек­тро­стан­ция, на ко­то­рой для по­лу­че­ния элек­тро­энер­гии ис­поль­зу­ет­ся те­п­ло­та, вы­де­ляю­щая­ся в ядер­ном ре­ак­то­ре в ре­зуль­та­те кон­тро­ли­руе­мой цеп­ной ре­ак­ции де­ле­ния ядер тя­жё­лых эле­мен­тов (в осн. $\ce{^{233}U, ^{235}U, ^{239}Pu}$ ). Те­п­ло­та, об­ра­зую­щая­ся в ак­тив­ной зо­не ядер­но­го ре­ак­то­ра, пе­ре­да­ёт­ся (не­по­сред­ст­вен­но ли­бо че­рез про­ме­жу­точ­ный те­п­ло­но­си­тель ) ра­бо­че­му те­лу (пре­им. во­дя­но­му па­ру), ко­то­рое при­во­дит в дей­ст­вие па­ро­вые тур­би­ны с тур­бо­ге­не­ра­то­ра­ми.

АЭC в принципе является аналогом обычной тепловой электростанции (ТЭС), в которой вместо топки парового котла используется ядерный реактор. Однако при сходстве принципиальных термодинамических схем ядерных и тепловых энергоустановок между ними есть и существенные различия. Основными из них являются экологические и экономические преимущества АЭС перед ТЭС: АЭС не нуждаются в кислороде для сжигания топлива; они практически не загрязняют окружающую среду сернистыми и др. газами; ядерное топливо имеет значительно более высокую теплотворную способность (при делении 1г изотопов U или Pu высвобождается 22 500 кВт∙ч, что эквивалентно энергии, содержащейся в 3000 кг каменного угля), что резко сокращает его объёмы и расходы на транспортировку и обращение; мировые энергетические ресурсы ядерного топлива существенно превышают природные запасы углеводородного топлива. Кроме того, применение в качестве источника энергии ядерных реакторов (любого типа) требует изменения тепловых схем, принятых на обычных ТЭС, и введения в структуру АЭС новых элементов, напр. биологич. защиты (см. Радиационная безопасность ), системы перегрузки отработанного топлива, бассейна выдержки топлива и др. Передача тепловой энергии от ядерного реактора к паровым турбинам осуществляется посредством теплоносителя, циркулирующего по герметичным трубопроводам, в сочетании с циркуляционными насосами, образующими т. н. реакторный контур или петлю. В качестве теплоносителей применяют обычную и тяжёлую воду, водяной пар, жидкие металлы, органические жидкости, некоторые газы (например, гелий, углекислый газ). Контуры, по которым циркулирует теплоноситель, всегда замкнуты во избежание утечки радиоактивности, их число определяется в основном типом ядерного реактора, а также свойствами рабочего тела и теплоносителя.

На АЭС с одноконтурной схемой (рис., а ) теплоноситель является также и рабочим телом, весь контур радиоактивен и потому окружён биологической защитой. При использовании в качестве теплоносителя инертного газа, например гелия, который не активируется в нейтронном поле активной зоны, биологическая защита необходима только вокруг ядерного реактора, поскольку теплоноситель не радиоактивен. Теплоноситель – рабочее тело, нагреваясь в активной зоне реактора, затем поступает в турбину, где его тепловая энергия преобразуется в механическую и далее в электрогенераторе – в электрическую. Наиболее распространены одноконтурные АЭС с ядерными реакторами, в которых теплоносителем и замедлителем нейтронов служит вода. Рабочее тело образуется непосредственно в активной зоне при нагревании теплоносителя до кипения. Такие реакторы называют кипящими, в мировой ядерной энергетике они обозначаются как BWR (Boiling Water Reactor). В России получили распространение кипящие реакторы с водяным теплоносителем и графитовым замедлителем – РБМК (реактор большой мощности канальный). Перспективным считается использование на АЭС высокотемпературных газоохлаждаемых реакторов (с гелиевым теплоносителем) – ВТГР (HTGR). Кпд одноконтурных АЭС, работающих в закрытом газотурбинном цикле, может превышать 45–50%.

При двухконтурной схеме (рис., б ) нагретый в активной зоне теплоноситель первого контура передаёт в парогенераторе (теплообменнике ) тепловую энергию рабочему телу во втором контуре, после чего циркуляционным насосом возвращается в активную зону. Первичным теплоносителем может быть вода, жидкий металл или газ, а рабочим телом вода, превращающаяся в водяной пар в парогенераторе. Первый контур радиоактивен и окружается биологической защитой (кроме тех случаев, когда в качестве теплоносителя используется инертный газ). Второй контур обычно радиационно безопасен, поскольку рабочее тело и теплоноситель первого контура не соприкасаются. Наибольшее распространение получили двухконтурные АЭС с реакторами, в которых первичным теплоносителем и замедлителем служит вода, а рабочим телом – водяной пар. Этот тип реакторов обозначают как ВВЭР – водо-водяной энергетич. реактор (PWR – Power Water Reactor). Кпд АЭС с ВВЭР достигает 40%. По термодинамической эффективности такие АЭС уступают одноконтурным АЭС с ВТГР, если температура газового теплоносителя на выходе из активной зоны превышает 700 °С.

Трёхконтурные тепловые схемы (рис., в ) применяют лишь в тех случаях, когда необходимо полностью исключить контакт теплоносителя первого (радиоактивного) контура с рабочим телом; например, при охлаждении активной зоны жидким натрием его контакт с рабочим телом (водяным паром) может привести к крупной аварии. Жидкий натрий как теплоноситель применяют только в ядерных реакторах на быстрых нейтронах (FBR – Fast Breeder Reactor). Особенность АЭС с реактором на быстрых нейтронах состоит в том, что одновременно с выработкой электрической и тепловой энергии они воспроизводят делящиеся изотопы, пригодные для использования в тепловых ядерных реакторах (см. Реактор-размножитель ).

Турбины АЭС обычно работают на насыщенном или слабоперегретом паре. При использовании турбин, работающих на перегретом паре, насыщенный пар для повышения температуры и давления пропускают через активную зону реактора (по особым каналам) либо через специальный теплообменник – пароперегреватель, работающий на углеводородном топливе. Термодинамическая эффективность цикла АЭС тем выше, чем выше параметры теплоносителя, рабочего тела, которые определяются технологическими возможностями и свойствами конструкционных материалов, применяемых в контурах охлаждения АЭС.

На АЭС боль­шое вни­ма­ние уде­ля­ют очи­ст­ке те­п­ло­но­си­те­ля, по­сколь­ку имею­щие­ся в нём ес­тественные при­ме­си, а так­же про­дук­ты кор­ро­зии, на­ка­п­ли­ваю­щие­ся в про­цес­се экс­плуа­та­ции обо­ру­до­ва­ния и тру­бо­про­во­дов, яв­ля­ют­ся ис­точ­ни­ка­ми ра­дио­ак­тив­но­сти. Сте­пень чис­то­ты те­п­ло­но­си­те­ля во мно­гом оп­ре­де­ля­ет уро­вень ра­ди­ационной об­ста­нов­ки в по­ме­ще­ни­ях АЭС.

АЭС прак­ти­че­ски все­гда стро­ят вбли­зи по­тре­би­те­лей энер­гии, т. к. рас­хо­ды на транс­пор­ти­ров­ку ядер­но­го то­п­ли­ва на АЭС, в от­ли­чие от уг­ле­во­до­род­но­го то­п­ли­ва для ТЭС, ма­ло влия­ют на се­бе­стои­мость вы­ра­ба­ты­вае­мой энер­гии (обыч­но ядер­ное то­п­ли­во в энер­ге­тич. ре­ак­то­рах за­ме­ня­ют на но­вое один раз в неск. лет), а пе­ре­да­ча как элек­трической, так и те­п­ло­вой энер­гии на боль­шие рас­стоя­ния за­мет­но по­вы­ша­ет их стои­мость. АЭС со­ору­жа­ют с под­вет­рен­ной сто­ро­ны от­но­си­тель­но бли­жай­ше­го на­се­лён­но­го пунк­та, во­круг неё соз­да­ют са­ни­тар­но-за­щит­ную зо­ну и зо­ну на­блю­де­ния, где про­жи­ва­ние на­се­ле­ния не­до­пус­ти­мо. В зо­не на­блю­де­ния раз­ме­ща­ют кон­троль­но-из­ме­ри­тель­ную ап­па­ра­ту­ру для по­сто­ян­но­го мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

АЭС – ос­но­ва ядер­ной энер­ге­ти­ки . Глав­ное их на­зна­че­ние – про­изводство элек­тро­энер­гии (АЭС кон­ден­са­ци­он­но­го ти­па) или ком­би­нированное про­изводство элек­тро­энер­гии и те­п­ла (атом­ные те­п­ло­элек­тро­цен­тра­ли – АТЭЦ). На АТЭЦ часть от­ра­бо­тав­ше­го в тур­би­нах па­ра от­во­дит­ся в т. н. се­те­вые те­п­ло­об­мен­ни­ки для на­гре­ва­ния во­ды, цир­ку­ли­рую­щей в замк­ну­тых се­тях те­п­ло­снаб­же­ния. В отдельных слу­ча­ях те­п­ло­вая энер­гия ядер­ных ре­ак­то­ров мо­жет ис­поль­зо­вать­ся толь­ко для нужд те­п­ло­фи­ка­ции (атом­ные стан­ции те­п­ло­снаб­же­ния – АСТ). В этом слу­чае на­гре­тая во­да из те­п­ло­об­мен­ни­ков пер­во­го-вто­ро­го кон­ту­ров по­сту­па­ет в се­те­вой те­п­ло­об­мен­ник, где от­да­ёт те­п­ло се­те­вой во­де и за­тем воз­вра­ща­ет­ся в кон­тур.

Од­но из пре­иму­ществ АЭС по срав­не­нию с обыч­ны­ми ТЭС – их вы­со­кая эко­ло­гич­ность, со­хра­няю­щая­ся при ква­ли­фи­цир. экс­плуа­та­ции ядер­ных ре­ак­то­ров. Су­ще­ст­вую­щие барь­е­ры ра­ди­ационной безо­пас­но­сти АЭС (обо­лоч­ки твэ­лов, кор­пус ядер­но­го ре­ак­то­ра и т. п.) пред­от­вра­ща­ют за­гряз­не­ние те­п­ло­но­си­те­ля ра­дио­ак­тив­ны­ми про­дук­та­ми де­ле­ния. Над ре­ак­тор­ным за­лом АЭС воз­во­дит­ся за­щит­ная обо­лоч­ка (кон­тей­мент) для ис­клю­че­ния по­па­да­ния в ок­ру­жаю­щую сре­ду ра­дио­ак­тив­ных ма­те­риа­лов при са­мой тя­жё­лой ава­рии – раз­гер­ме­ти­за­ции пер­во­го кон­ту­ра, рас­плав­ле­нии ак­тив­ной зо­ны. Под­го­тов­ка пер­со­на­ла АЭС пре­ду­смат­ри­ва­ет обу­че­ние на специальных тре­на­жё­рах (ими­та­то­рах АЭС) для от­ра­бот­ки дей­ст­вий как в штат­ных, так и в ава­рий­ных си­туа­ци­ях. На АЭС име­ется ряд служб, обес­пе­чи­ваю­щих нор­маль­ное функ­цио­ни­ро­ва­ние стан­ции, безо­пас­ность её пер­со­на­ла (напр., до­зи­мет­рический кон­троль, обес­пе­че­ние са­ни­тар­но-ги­гие­нических тре­бо­ва­ний и др.). На тер­ри­то­рии АЭС соз­да­ют временные хра­ни­ли­ща для све­же­го и от­ра­бо­тан­но­го ядер­но­го то­п­ли­ва, для жид­ких и твёр­дых ра­дио­ак­тив­ных от­хо­дов, по­яв­ляю­щих­ся при её экс­плуа­та­ции. Всё это при­во­дит к то­му, что стои­мость ус­та­нов­лен­но­го ки­ло­ват­та мощ­но­сти на АЭС бо­лее чем на 30% пре­вы­ша­ет стои­мость ки­ло­ват­та на ТЭС. Од­на­ко стои­мость от­пус­кае­мой по­тре­би­те­лю энер­гии, вы­ра­бо­тан­ной на АЭС, ни­же, чем на ТЭС, из-за очень ма­лой до­ли в этой стои­мо­сти то­п­лив­ной со­став­ляю­щей. Вслед­ст­вие вы­со­кой эко­но­мич­но­сти и осо­бен­но­стей ре­гу­ли­ро­ва­ния мощ­но­сти АЭС обыч­но ис­поль­зу­ют в ба­зо­вых ре­жи­мах, при этом ко­эффициент ис­поль­зо­ва­ния ус­та­нов­лен­ной мощ­но­сти АЭС мо­жет пре­вы­шать 80%. По ме­ре уве­ли­че­ния до­ли АЭС в об­щем энер­ге­тическом ба­лан­се ре­гио­на они мо­гут ра­бо­тать и в ма­нёв­рен­ном ре­жи­ме (для по­кры­тия не­рав­но­мер­но­стей на­груз­ки в ме­ст­ной энер­го­сис­те­ме). Спо­соб­ность АЭС ра­бо­тать дли­тель­ное вре­мя без сме­ны то­п­ли­ва по­зво­ля­ет ис­поль­зо­вать их в уда­лён­ных ре­гио­нах. Раз­ра­бо­та­ны АЭС, ком­по­нов­ка обо­ру­до­ва­ния ко­то­рых ос­но­ва­на на прин­ци­пах, реа­ли­зуе­мых в су­до­вых ядер­ных энер­ге­тич. ус­та­нов­ках (см. Ато­мо­ход ). Та­кие АЭС мож­но раз­мес­тить, напр., на бар­же. Пер­спек­тив­ны АЭС с ВТГР, вы­ра­ба­ты­ваю­щие те­п­ло­вую энер­гию для осу­ще­ст­в­ле­ния тех­но­ло­гических про­цес­сов в ме­тал­лур­гическом, хи­мическом и неф­тяном про­из­вод­ст­вах, при га­зи­фи­ка­ции уг­ля и слан­цев, в про­изводстве син­те­тического угле­во­до­род­но­го то­п­ли­ва. Срок экс­плуа­та­ции АЭС 25–30 лет. Вы­вод АЭС из экс­плуа­та­ции, де­мон­таж ре­ак­то­ра и ре­куль­ти­ва­ция её пло­щад­ки до со­стоя­ния «зе­лё­ной лу­жай­ки» – слож­ное и до­ро­го­стоя­щее ор­га­ни­за­ци­он­но-тех­ническое ме­ро­прия­тие, осу­ще­ст­в­ляе­мое по раз­ра­ба­ты­вае­мым в ка­ж­дом кон­крет­ном слу­чае пла­нам.

Первая в мире действующая АЭС мощностью 5000 кВт пущена в России в 1954 в г. Обнинск. В 1956 вступила в строй АЭС в Колдер-Холле в Великобритании (46 МВт), в 1957 – АЭС в Шиппингпорте в США (60 МВт). В 1974 пущена первая в мире АТЭЦ – Билибинская (Чукотский автономный окр.). Массовое строительство крупных экономичных АЭС началось во 2-й пол. 1960-х гг. Однако после аварии (1986) на Чернобыльской АЭС привлекательность ядерной энергетики заметно снизилась, а в ряде стран, имеющих достаточные собственные традиционные топливно-энергетические ресурсы или доступ к ним, строительство новых АЭС фактически прекратилось (Россия, США, Великобритания, ФРГ). В начале 21в., 11.3.2011 в Тихом океане у восточного побережья Японии в результате сильнейшего землетрясения магнитудой от 9,0 до 9,1 и последовавшего за ним цунами (высота волн достигала 40,5 м) на АЭС « Фукусима1 » (посёлок Окума, префектура Фукусима) произошла крупнейшая техногенная катастрофа – радиационная авария максимального 7-го уровня по Международной шкале ядерных событий. Удар цунами вывел из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии. В декабре 2013 АЭС была официально закрыта. По состоянию на первую половину 2016 высокий уровень излучения делает невозможной работу не только людей в реакторных зданиях, но и роботов, которые из-за высокого уровня радиации выходят из строя. Планируется, что вывоз пластов почвы в специальные хранилища и её уничтожение займут 30 лет.

31 страна мира использует АЭС. На 2015 действует ок. 440 ядерных энергетических реакторов (энергоблоков) суммарной мощностью более 381 тыс. МВт (381 ГВт). Ок. 70 атомных реакторов находятся в стадии строительства. Мировым лидером по доле в общей выработке электроэнергии является Франция (второе место по установленной мощности), в которой ядерная энергетика составляет 76,9%.

Крупнейшая АЭС в мире на 2015 (по установленной мощности) – Касивадзаки-Карива (г. Касивадзаки, префектура Ниигата, Япония). В эксплуатации находятся 5 кипящих ядерных реакторов (BWR) и 2 улучшенных кипящих ядерных реактора (ABWR), суммарная мощность которых составляет 8212 МВт (8,212 ГВт).

Крупнейшая АЭС в Европе – Запорожская АЭС (г. Энергодар, Запорожская область, Украина). С 1996 работают 6 энергоблоков с реакторами типа ВВЭР-1000 суммарной мощностью 6000 МВт (6 ГВт).

Таблица 1. Крупнейшие потребители ядерной энергетики в мире
Государство Количество энергоблоков Суммарная мощность (МВт) Суммарная вырабатываемая
электроэнергия (млрд. кВт·ч/год)
США 104 101 456 863,63
Франция 58 63 130 439,74
Япония 48 42 388 263,83
Россия 34 24 643 177,39
Южная Корея 23 20 717 149,2
Китай 23 19 907 123,81
Канада 19 13 500 98,59
Украина 15 13 107 83,13
Германия 9 12 074 91,78
Великобритания 16 9373 57,92

США и Япония ведут разработки мини-АЭС, мощностью порядка 10–20 МВт для тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе – и индивидуальных домов. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

В России на 2015 действует 10 АЭС, на которых эксплуатируются 34 энергоблока общей мощностью 24 643 МВт (24,643 ГВт), из них 18 энергоблоков с реакторами типа ВВЭР (из них 11 энергоблоков ВВЭР-1000 и 6 энергоблоков ВВЭР-440 различных модификаций); 15 энергоблоков с канальными реакторами (11 энергоблоков с реакторами типа РБМК-1000 и 4 энергоблока с реакторами типа ЭГП-6 – Энергетический Гетерогенный Петлевой реактор с 6 петлями циркуляции теплоносителя, электрической мощностью 12 МВт); 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением БН-600 (в процессе ввода в промышленную эксплуатацию находится 1 энергоблок БН-800). Согласно Федеральной целевой программе «Развитие атомного энергопромышленного комплекса России», к 2025 доля электроэнергии, выработанной на атомных электростанциях РФ, должна увеличиться с 17 до 25% и составить ок. 30,5 ГВт. Планируется построить 26 новых энергоблоков, 6 новых АЭС, две из которых – плавучие (табл. 2).

Таблица 2. АЭС, действующие на территории РФ
Наименование АЭС Количество энергоблоков Годы ввода в эксплуа-тацию энерго-блоков Суммарная установ-ленная мощность (МВт) Тип реактора
Балаковская АЭС (близ г. Балаково) 4 1985, 1987, 1988, 1993 4000 ВВЭР-1000
Калининская АЭС [в 125 км от Твери на берегу реки Удомля (Тверская обл.)] 4 1984, 1986, 2004, 2011 4000 ВВЭР-1000
Курская АЭС (близ г. Курчатов на левом берегу реки Сейм) 4 1976, 1979, 1983, 1985 4000 РБМК-1000
Ленинградская АЭС (близ г. Сосновый Бор) 4 в стадии строительства – 4 1973, 1975, 1979, 1981 4000 РБМК-1000 (первая в стране станция с реакторами этого типа)
Ростовская АЭС (расположена на берегу Цимлянского водохранилища, в 13,5 км от г. Волгодонск) 3 2001, 2010, 2015 3100 ВВЭР-1000
Смоленская АЭС (в 3 км от города-спутника Десногорск) 3 1982, 1985, 1990 3000 РБМК-1000
Нововоронежская АЭС (близ г. Нововоронеж) 5; (2 – выведены), в стадии строительства – 2. 1964 и 1969 (выведены), 1971, 1972, 1980 1800 ВВЭР-440;
ВВЭР-1000
Кольская АЭС (в 200 км к югу от г. Мурманск на берегу озера Имандра) 4 1973, 1974, 1981, 1984 1760 ВВЭР-440
Белоярская АЭС (близ г. Заречный) 2 1980, 2015 600
800
БН-600
БН-800
Билибинская АЭС 4 1974 (2), 1975, 1976 48 ЭГП-6

Проектируемые АЭС в РФ

С 2008 по новому проекту АЭС-2006 (проект российской атомной станции нового поколения «3+» с улучшенными технико-экономическими показателями) строится Нововоронежская АЭС-2 (близ Нововоронежской АЭС), на которой предусматривается использование реакторов ВВЭР-1200. Ведётся сооружение 2 энергоблоков общей мощностью 2400 МВт, в дальнейшем планируется построить ещё 2. Пуск первого блока (блок № 6) Нововоронежской АЭС-2 состоялся в 2016, второго блока № 7 запланирован на 2018.

Балтийская АЭС предусматривает использование реакторной установки ВВЭР-1200 мощностью 1200 МВт; энергоблоков – 2. Суммарная установленная мощность 2300 МВт. Ввод в эксплуатацию первого блока планируется в 2020. Федеральным агентством по атомной энергии России ведётся проект по созданию плавучих атомных электростанций малой мощности. Строящаяся АЭС «Академик Ломоносов» станет первой в мире плавучей атомной электростанцией. Плавучая станция может использоваться для получения электрической и тепловой энергии, а также для опреснения морской воды. В сутки она может выдавать от 40 до 240 тыс. м 2 пресной воды. Установленная электрическая мощность каждого реактора – 35 МВт. Ввод станции в эксплуатацию планируется в 2018.

Международные проекты России по атомной энергетике

23.9.2013 Россия передала Ирану в эксплуатацию АЭС «Бушер» («Бушир») , близ г. Бушир (остан Бушир); количество энергоблоков – 3 (1 построен, 2 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Куданкулам», близ г. Куданкулам (штат Тамилнад, Индия); количество энергоблоков – 4 (1 – в эксплуатации, 3 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Akkuyu», близ г. Мерсин (иль Мерсин, Турция); количество энергоблоков – 4 (в стадии сооружения); тип реактора – ВВЭР-1200; Белорусская АЭС (г. Островец, Гродненская область, Белоруссия); количество энергоблоков – 2 (в стадии сооружения); тип реактора – ВВЭР-1200. АЭС «Hanhikivi 1» (мыс Ханхикиви, область Похйойс-Похьянмаа, Финляндия); количество энергоблоков – 1 (в стадии сооружения); тип реактора – ВВЭР-1200.

Атомные электростанции

Атомные электростанции представляют собой, ядерные установки производящие энергию, соблюдая при этом заданные режимы при определённых условиях. Для этих целей используется определённая проектом территория, где для выполнения поставленных задач используют ядерные реакторы в комплексе с необходимыми системами, устройствами, оборудованием и сооружениями. Для выполнения целевых задач привлекается специализированный персонал.

Все атомные электростанции России

История атомной энергетики у нас в стране и за рубежом

Вторая половина 40 –х гг., ознаменовалась началом работ по созданию первого проекта, предполагающего использование мирного атома для генерации электроэнергии. В 1948 году, И.В. Курчатов, руководствуясь заданием партии и советского правительства, внёс предложение о начале работ по практическому использованию атомной энергии, для вырабатывания электроэнергии.

Спустя два года, в 1950г., неподалёку от посёлка Обнинское, расположенного в Калужской области, был дан старт строительству первой на планете АЭС. Запуск первой в мире промышленной атомной электростанции, мощность которой, составляла 5МВт, состоялся 27.06.1954г. Советский Союз стал первой в мире державой, которой удалось применить атом в мирных целях. Станция была открыта в получившем к тому времени статус города, Обнинске.

Но советские учёные не остановились на достигнутом, ими были продолжены работы в этом направлении, в частности всего четыре года спустя в 1958г., была начата эксплуатация первой очереди Сибирской АЭС. Её мощность в разы превосходила станцию в Обнинске и составляла 100МВт. Но для отечественных учёных и это, не было пределом, по завершению всех работ, проектная мощность станции составила 600МВт.

На просторах Советского Союза, строительство АЭС, приняло по тем временам, массовые масштабы. В том же году, была развёрнута стройка Белоярской АЭС, первая очередь которой, уже в апреле 1964 году снабдила первым потребителей. География строительства атомных станций, опутала своей сетью всю страну, в этом же году запустили первый блок АЭС в Воронеже, его мощность равнялась 210МВт, второй блок запущенный пять лет спустя в 1969 году, мог похвастаться мощностью в 365МВт. бум строительства АЭС, не стихал на протяжении всей советской эпохи. Новые станции, или дополнительные блоки уже построенных, запускались с периодичностью в несколько лет. Так, уже в 1973 году, собственную АЭС, получил Ленинград.

Однако Советская держава не была единственной в мире, кому было под силу осваивать такие проекты. В Великобритании, также не дремали и, понимая перспективность данного направления, активно изучали этот вопрос. Спустя всего два года, поле открытия станции в Обнинске, англичане запустили собственный проект по освоению мирного атома. В 1956г, городке Колдер – Холл британцами была запущенная своя станция, мощность которой, превышала советский аналог и составляла 46МВт. Не отставали и на другом берегу Атлантики, год спустя американцы торжественно запустили в эксплуатацию станцию в Шиппингпорте. Мощность объекта составила 60МВт.

Однако освоение мирного атома таило в себе скрытые угрозы, о которых вскоре узнал весь мир. Первой ласточкой стала крупная авария в Три – Майл – Айленд произошедшая в 1979г., ну а вслед за ней произошла катастрофа поразившая весь мир, в Советском Союзе, в небольшом городе Чернобыле произошла крупномасштабная катастрофа, это случилось в 1986году. Последствия трагедии были невосполнимы, но кроме этого, данный факт, заставил задуматься весь мир о целесообразности использования ядерной энергии в мирных целях.

Мировые светила в данной отрасли, всерьёз задумались о повышении безопасности ядерных объектов. Итогом стало проведение учредительной ассамблеи, которая была организована 15.05.1989г в советской столице. На ассамблее приняли решение о создании Всемирной ассоциации, в которую должны войти все операторы атомных электростанций, её общепризнанной аббревиатурой является WANO. В ходе реализации своих программ, организация планомерно следит за повышением уровня безопасности атомных станций в мире. Однако, несмотря на все приложенные усилия, даже самые современные и на первый взгляд кажущиеся безопасными объёкты, не выдерживают натиска стихий. Именно по причине эндогенной катастрофы, которая проявилась в форме землетрясения и последовавшего за ним цунами в 2011 году произошла авария на станции Фукусима – 1.

Атомный блэкаут

Классификация АЭС

Атомные станции классифицируются по двум признакам, по виду энергии которую они выпускают и по типу реакторов. В зависимости от типа реактора определяется количество вырабатываемой энергии, уровень безопасности, а также то, какое именно сырьё применяется на станции.

По типу энергии, которую производят станции, они делятся на два вида:

Атомные электростанции. Их основной функцией является выработка электрической энергии.

Атомные теплоэлектростанции. За счёт установленных там теплофикационных установок, использующих тепловые потери, которые неизбежны на станции, становится возможен нагрев сетевой воды. Таким образом, данные станции помимо электроэнергии вырабатывают тепловую энергию.

Исследовав множество вариантов, учёные пришли к выводу, что наиболее рациональными являются три их разновидности, которые в настоящее время и применяются во всём мире. Они отличаются по ряду признаков:

  1. Используемое топливо;
  2. Применяемые теплоносители;
  3. Активные зоны, эксплуатируемые для поддержания необходимой температуры;
  4. Тип замедлителей, определяющий снижение скорости нейтронов, которые выделяются при распаде и так необходимые, для поддержки цепной реакции.

Самым распространённым типом, является реактор, использующий в качестве топлива обогащённый уран. В качестве теплоносителя и замедлителя здесь используется обыкновенная или лёгкая вода. Такие реакторы называют лёгководными, их известно две разновидности. В первом, пар служащий для вращения турбин, образуется в активной зоне, называемой кипящим реактором. Во втором, образование пара происходит во внешнем контуре, который связан с первым контуром посредством теплообменников и парогенераторов. Данный реактор, начали разрабатывать в пятидесятых годах прошлого столетия, основой для них, были армейские программы США. Параллельно, примерно в эти же сроки, в Союзе разработали кипящий реактор, в качестве замедлителя у которого, выступал графитовый стержень.

Именно тип реактора с замедлителем данного типа и нашёл применение на практике. Речь идёт о газоохлаждаемом реакторе. Его история началась в конце сороковых, начале пятидесятых годов XX века, первоначально разработки данного типа использовались при производстве ядерного оружия. В связи с этим, для него подходят два вида топлива, это оружейный плутоний и природный уран.

Последним проектом, которому сопутствовал коммерческий успех, стал реактор, где в качестве теплоносителя применяется тяжёлая вода, в качестве топлива используется уже хорошо нам знакомый природный уран. Первоначально, такие реакторы проектировали несколько стран, но в итоге их производство сосредоточилось в Канаде, чему служит причиной, наличие в этой стране массовых залежей урана.

Ториевые АЭС -- энергетика будущего?

История совершенствования типов ядерных реакторов

Реактор первой на планете АЭС, представлял собой весьма разумную и жизнеспособную конструкцию, что и было доказано в ходе многолетней и безупречной работы станции. Среди его составных элементов выделяли:

  1. боковую водную защиту;
  2. кожух кладки;
  3. верхнее перекрытие;
  4. сборный коллектор;
  5. топливный канал;
  6. верхнюю плиту;
  7. графитовую кладку;
  8. нижнюю плиту;
  9. распределительный коллектор.

Основным конструкционным материалом для оболочек ТВЭЛ и технологических каналов была избрана нержавеющая сталь, на тот момент, не было известно о циркониевых сплавах, которые могли бы, подходить по свойствам для работы с температурой 300°С. Охлаждение такого реактора осуществлялось водой, при этом давление под которым она подавалась, составляло 100ат. При этом выделялся пар с температурой 280°С, что является вполне умеренным параметром.

Каналы ядерного реактора были сконструированы таким образом, чтобы была возможность их полностью заменить. Это связано с ограничением ресурса, которое обусловлено временем нахождения топлива в зоне активности. Конструкторы не нашли оснований рассчитывать на то, что конструкционные материалы расположенные в зоне активности под облучением, смогут выработать весь свой ресурс, а именно порядка 30 лет.

Что касается конструкции ТВЭЛ, то было решено принять трубчатый вариант с односторонним механизмом охлаждения

Это уменьшало вероятность того, что продукты деления попадут в контур в случае повреждения ТВЭЛ. Дл регуляции температуры оболочки ТВЭЛ, применили топливную композицию ураномолибденового сплава, который имел вид крупки, диспергированной посредством тепловодной матрицы. Обработанное таким образом ядерное горючее позволило получить высоконадёжные ТВЭЛ. которые были способны работать при высоких тепловых нагрузках.

Примером следующего витка развития мирных ядерных технологий может, послужить печально известная Чернобыльская АЭС. На тот момент технологии, применённые при её строительстве, считались наиболее передовыми, а тип реактора современнейшим в мире. Речь идёт о реакторе РБМК – 1000.

Тепловая мощность одного такого реактора достигала 3200МВт, при этом он располагает двумя турбогенераторами, электрическая мощность которых, достигает 500МВт, таким образом, один энергоблок обладает электрической мощностью 1000МВт. В качестве топлива для РБМК использовалась обогащённая двуокись урана. В исходном состоянии перед началом процесса одна тонна такого топлива содержит порядка 20кг горючего, а именно урана – 235. При стационарной загрузке двуокиси урана в реактор масса вещества составляет 180т.

Но процесс загрузки не представляет собой навал, в реактор помещают тепловыделяющие элементы, уже хорошо нам известные ТВЭЛ. По сути, они являются трубками, для создания которых применён циркониевый сплав. В качестве содержимого, в них помещаются таблетки двуокиси урана, обладающие цилиндрической формой. В зоне активности реактора их помещают в тепловыделяющие сборки, каждая из которых объединяет 18 ТВЭЛ.

Таких сборок в подобном реакторе насчитывается до 1700 штук, и размещаются они в графитовой кладке, где специально для этих целей сконструированы технологические каналы вертикальной формы. Именно в них происходит циркуляция теплоносителя, роль которого, в РМБК, выполняет вода. Водоворот воды происходит при воздействии циркуляционных насосов, коих насчитывается восемь штук. Реактор находится внутри шахты, а графическая кладка находится в цилиндрическом корпусе толщиной в 30мм. Опорой всего аппарата является бетонное основание, под которым находится бассейн – барботер, служащий для локализации аварии.

Третье поколение реакторов использует тяжёлую воду

Основным элементом которой, является дейтерий. Наиболее распространённая конструкция носит название CANDU, она была разработана в Канаде и широко применяется по всему миру. Ядро таких реакторов располагается в горизонтальном положении, а роль нагревательной камеры играют резервуары цилиндрической формы. Топливный канал тянется через всю нагревательную камеру, каждый из таких каналов, обладает двумя концентрическими трубками. Существуют внешняя и внутренняя трубки.

Во внутренней трубке, топливо находится под давлением теплоносителя, что позволяет дополнительно заправлять реактор в процессе работы. Тяжёлая вода с формулой D20 используется в качестве замедлителя. В ходе замкнутого цикла происходит прокачка воды по трубам реактора, содержащего пучки топлива. В результате ядерного деления выделяется тепло.

Цикл охлаждения при использовании тяжёлой воды заключается в прохождении через парогенераторы, где от выделяемого тяжёлой водой тепла закипает обыкновенная вода, в результате чего, образуется пар, выходящий под высоким давлением. Он распределяется обратно в реактор, в результате чего возникает замкнутый цикл охлаждения.

Именно по такому пути, происходило пошаговое совершенствование типов ядерных реакторов, которые использовались и используются в различных странах мира.

Что такое атомная электростанция?

Атомная электростанция или ядерная электростанция является тепловой электростанцией, в которой источником тепла является ядерный реактор. Обычно во всех традиционных тепловых электростанциях тепло используется для получения пара, который приводит в действие паровую турбину, соединенную с электрогенератором, который вырабатывает электричество. По состоянию на 23 апреля 2014 года МАГАТЭ отчиталось об эксплуатации 435 энергетических ядерных реакторов в 31 стране мира. Атомные электростанции, как правило, считаются станциями базисной нагрузки, так как стоимость топлива составляет небольшую часть себестоимости продукции. Затраты на их эксплуатацию, техническое обслуживание и топливо, наряду с гидроэлектростанциями, находятся на нижней границе диапазона, что делает их пригодными для роли поставщиков электроэнергии базовой нагрузки. Однако, довольно неустойчивыми являются затраты на утилизацию отработанного топлива.

История атомной промышленности

Впервые в истории с помощью ядерного реактора выработали электроэнергию 3 сентября 1948 года в Графитовом Реакторе X-10 в г. Ок-Ридж, штат Теннесси, Соединенные Штаты Америки. Этот реактор был прототипом первой атомной электростанции и произвел достаточно электроэнергии для питания лампы накаливания. Второй более крупный эксперимент был проведен 20 декабря 1951 года на опытной станции EBR-I вблизи г. Арко, штат Айдахо в Соединенных Штатах Америки. 27 июня 1954 года в советском городе Обнинск начала свою работу первая в мире атомная электростанция для выработки электроэнергии для энергосистемы. Первая в мире полномасштабная электростанция Колдер-Холл была запущена в Англии 17 октября 1956 года. Первая в мире полномасштабная электростанция Шиппингпорт, предназначенная исключительно для производства электроэнергии (Колдер Холл была также предназначена для производства плутония), была подключена к сети 18 декабря 1957 года в Соединенных Штатах Америки.

Как работает атомная электростанция

Преобразование в электрическую энергию происходит косвенно, как в обычных тепловых электростанциях. Деление ядра атома в ядерном реакторе нагревает теплоноситель реактора. Теплоносителем может быть вода или газ, или даже жидкий металл в зависимости от типа реактора. Теплоноситель реактора затем переходит в парогенератор и нагревает воду для получения пара. Пар под давлением затем, как правило, подают в многоступенчатую паровую турбину. После того, как паровая турбина расширилась и частично конденсировала пар оставшийся пар конденсируется в конденсаторе. Конденсатор представляет собой теплообменник, который соединен со вторичным контуром охлаждения таким, как река или градирня. Вода затем закачивается обратно в парогенератор и цикл начинается снова. Пароводяной цикл соответствует циклу Рэнкина.

Ядерный реактор АЭС

Ядерный реактор является сердцем станции. В ее центральной части в активной зоне реактора в результате управляемого деления атомного ядра генерируется тепло. Это тепло нагревает теплоноситель, когда он прокачивается через реактор и, таким образом, выводит энергию из реактора. Тепло от ядерного деления используется для производства пара, который проходит через турбины, которые в свою очередь питают электрические генераторы.

В ядерных реакторах в качестве топлива цепной реакции обычно используют уран. Уран - это очень тяжелый металл, залежи которого в изобилии находится в морской воде в большинстве скальных пород на Земле. Встречающиеся в природе уран встречается в виде двух различных изотопов: уран-238 (U-238), который составляет 99,3% природного урана, и уран-235 (U-235), на который приходится около 0,7% урана в природе. Изотопы представляют собой атомы одного и того же элемента с разным количеством нейтронов. Таким образом, U-238 имеет 146 нейтронов, а U-235 имеет 143 нейтрона. Различные изотопы имеют разные модели поведения. Например, U-235 является делящимся - это означает, что он легко расщепляется и выделяет много энергии, что делает его идеальным для ядерной энергетики. С другой стороны, U-238 не имеет такого свойства, несмотря на то, что это тот же элемент. Различные изотопы также имеют различные периоды полураспада. Период полураспада - это количество времени, необходимое для разложения половины образца радиоактивного элемента. U-238 имеет более длительный период полураспада, чем U-235, поэтому для его разложения требуется больше времени. Это также означает, что U-238 менее радиоактивен, чем U-235.

Так как ядерное деление создает радиоактивность, активная зона реактора окружена защитным экраном. Эта оболочка поглощает излучение и предотвращает выброс радиоактивного материала в окружающую среду. Кроме того, многие реакторы оборудованы бетонным куполом для защиты реактора как от внутренних аварий, так и от внешних воздействий.

Паровая турбина АЭС

Целью паровой турбины является преобразование тепла, содержащегося в паре в механическую энергию. Машинный зал с паровой турбиной, как правило, конструктивно отделен от здания главного ядерного реактора. Здания машинного зала и ядерного реактора расположены так, чтобы при взрыве турбины во время эксплуатации железные обломки не долетели до реактора.

В случае ядерного реактора, охлаждаемого водой под давлением, паровая турбина отделена от ядерной системы. Для обнаружения утечки в парогенераторе и таким образом попадания радиоактивной воды в первый контур устанавливают радиометр, который отслеживает пар на выходе из парогенератора. В отличие от этого, в реакторах с кипящей водой радиоактивная вода проходит через паровую турбину, так что турбина является частью рентгенологически контролируемой зоны АЭС.

Генератор АЭС

Генератор преобразует механическую энергию турбины в электрическую энергию. Используются низковольтные синхронные генераторы переменного тока высокой номинальной мощности.

Система охлаждения АЭС

Система охлаждения отводит тепло от активной зоны реактора и транспортирует его в другой район станции, где тепловая энергия может быть использована для производства электроэнергии или выполнения другой полезной работы. Как правило, горячий теплоноситель используется в качестве источника тепла для котла, а пар под давлением из котла приводит в движение одну или несколько паровых турбин электрических генераторов.

Предохранительные клапаны АЭС

В случае возникновения аварийной ситуации, могут быть использованы предохранительные клапаны для предотвращения разрыва труб или взрыва реактора. Клапаны спроектированы таким образом, чтобы они могли определить малейшее увеличение давления всех подаваемых энергоносителей. В случае реактора с кипящей водой, пар направляется в камеру понижения давления и конденсируется там. Камеры в теплообменнике соединены с промежуточным контуром охлаждения.

Насос питательной воды АЭС

Уровень воды в парогенераторе и ядерном реакторе контролируется с помощью системы питательной воды. Насос питательной воды имеет задачу забора воды из системы очистки конденсата, увеличивая давление и направляя ее в парогенераторы (в случае реактора с водой под давлением) либо непосредственно в реактор (для реакторов с кипящей водой).

Аварийный источник питания АЭС

Большинство атомных электростанций нуждаются в двух различных источниках питания, а именно во внеплощадочных трансформаторах собственных нужд питающих станций, которые достаточно отделены в распределительной подстанции и могут получать питание от нескольких линий электропередач. Кроме того, на некоторых атомных электростанциях турбогенератор может питать собственные нужды электростанции во время работы станции с помощью трансформаторов собственных нужд, которые отпускают электроэнергию с шин генератора до того, как она достигнет повышающего трансформатора (на таких электростанциях также есть трансформаторы собственных нужд электростанции, которые получают электроэнергию от внешних источников питания непосредственно из распределительной подстанции). Даже с двумя источниками резервного питания возможна полная электроснабжения от внешних источников. Атомные электростанции оснащены аварийным источником питания.

Специалисты на атомной электростанции

  • Инженеры-ядерщики
  • Операторы ядерного реактора
  • Работники службы дозиметрии
  • Персонал группы аварийного реагирования
  • Постоянные инспекторы Комиссии по ядерному регулированию

В Соединенных Штатах Америки и ​​Канаде работники электростанции, за исключением руководства, квалифицированного персонала (например, инженеров) и сотрудников службы безопасности, могут быть членами либо Международного Профсоюза Работников Электротехнической Промышленности (IBEW) или Профсоюза Подсобных Рабочих Америки (UWUA), или одного из различных профсоюзов или организаций работников, представляющих интересы машинистов, рабочих, котельщиков, монтажников, металлистов и т.д.

Затраты на АЭС

Экономика новых атомных электростанций является спорным вопросом, и многомиллиардные инвестиции зависят от выбора источника энергии. Атомные электростанции, как правило, имеют высокие капитальные затраты, но низкие прямые затраты на топливо, связанные с затратами на добычу, обработку, использование топлива и интернализированными затратами на хранение отработанного топлива. Таким образом, сравнение с другими методами выработки электроэнергии сильно зависит от предположений о сроках строительства и финансировании капитальных вложений для атомных станций. В соответствии с Законом Прайса-Андерсона в США смета затрат учитывает расходы на вывод электростанции из эксплуатации и хранение или переработку ядерных отходов. В настоящее время разрабатываются реакторы четвертого поколения с перспективой того, что все отработанное ядерное топливо ("ядерные отходы") потенциально может быть переработано с использованием будущих реакторов, чтобы полностью закрыть ядерный топливный цикл. В настоящее время, однако, не существует никакой эффективной объемной утилизации отходов от АЭС, и метод внутриплощадочного временного хранения все еще применяется почти на всех электростанциях из-за проблем со строительством постоянных хранилищ отходов. Только Финляндия имеет планы по строительству постоянных хранилищ, поэтому в мировом масштабе долгосрочные затраты на хранение отходов являются неопределенными.

С другой стороны, затраты на строительство или капитальные затраты в сторону мер по смягчению глобального потепления, таких как налог на выбросы углерода или торговля выбросами углекислого газа, все более благоприятствуют экономике ядерной энергетики. Есть надежда на достижение большей эффективности за счет более усовершенствованных конструкций реакторов. Обещают, что расход топлива Реакторов Третьего Поколения будет по крайней мере на 17% меньше и они будут иметь более низкие капитальные затраты, в то время как футуристические Реакторы Четвертого Поколения обещают на 10000-30000% большую эффективность использования топлива и ликвидацию ядерных отходов.

В Восточной Европе ряд давних проектов пытается найти финансирование, в частности Белене в Болгарии и дополнительные реакторы на Чернаводэ в Румынии, а некоторые потенциальные спонсоры "сошли со станции". Доступность дешевого газа и относительная надежность его будущих поставок также представляет собой серьезную проблему для ядерных проектов.

Анализируя экономику ядерной энергетики необходимо принимать во внимание, кто понесет риски, связанные неопределенностью будущего. На сегодняшний день все действующие атомные электростанции были построены государственными или регулируемыми государством коммунальными монополиями, где многие из рисков, связанных со строительными затратами, эксплуатационными характеристиками, ценами на топливо и другими факторами, несли потребители, а не поставщики. Многие страны уже либерализовали рынок электроэнергии, где эти риски, а также риск появления более дешевых конкурентов до момента окупаемости капитальных расходов, ложатся на плечи поставщиков и операторов станций, а не на потребителей, что приводит к существенному изменению оценки экономики новых атомных электростанций.

В связи с аварией на АЭС Фукусима I в 2011 году, вероятно, возрастут расходы для уже работающих и новых атомных станций из-за повышенных требований к хранению отработанного топлива на территории АЭС и повышенных проектных угроз. Однако многие проекты такие, как строящаяся в настоящее время AP1000, используют пассивные системы охлаждения для ядерной безопасности, в отличие от Фукусима I, которая нуждается активной системе охлаждения, а это в значительной степени уменьшает необходимость тратить больше средств на избыточное резервное оборудование для обеспечения безопасности.

Безопасность АЭС

В своей книге "Нормальные аварии" Чарльз Перроу говорит, что многочисленные и неожиданные сбои встроены в сложные и плотно связанные системы ядерных реакторов. Такие аварии неизбежны и их нельзя предотвратить. Междисциплинарная команда из Массачусетского технологического института (MIT) подсчитала, что с учетом ожидаемого роста ядерной энергетики в период с 2005 по 2055 годы можно ожидать, по крайней мере, четыре серьезные ядерные аварии. Однако исследование MIT не принимает во внимание улучшения в безопасности с 1970 года. С 1970 года до настоящего времени в мире произошло пять серьезных аварий (повреждения активной зоны): одна на АЭС Три-Майл-Айленд в 1979 году, одна на Чернобыльской АЭС в 1986 году и три на АЭС Фукусима-1 в 2011 году, что соответствует началу эксплуатации Реакторов Второго Поколения. В среднем во всем мире каждые восемь лет происходит одна серьезная авария.

Современные конструкции ядерных реакторов были многократно усовершенствованы с точки зрения безопасности со времени использования ядерных реакторов первого поколения. Атомные электростанции не могут взорваться как ядерная бомба, так как топливо для урановых реакторов не обогащается достаточно, а для ядерного оружия требуется прецизионное взрывчатое вещество, чтобы заставить топливо в достаточно малом объеме дойти до сверхкритического состояния. Большинство реакторов требуют непрерывного контроля температуры, чтобы предотвратить расплавление ядра, что и происходило несколько раз из-за аварии или стихийного бедствия, высвобождая радиацию и делая окружающую среду непригодной для жизни. Электростанции должны быть защищены от кражи ядерного материала (например, для изготовления "грязной" ядерной бомбы) и от нападения военных самолетов (что имело место) или ракет противника, или захваченных террористами самолетов.

Споры вокруг атомной энергетики

Дискуссии о ядерной энергетике ведутся по поводу спорного вопроса, который возник при внедрении и использовании реакторов ядерного деления для выработки электроэнергии из ядерного топлива для гражданских целей. Дискуссия о ядерной энергетике достигла своего пика в 1970-х и 1980-х годах, когда она "достигла беспрецедентной интенсивности в истории технологических противоречий» в некоторых странах.

Сторонники утверждают, что ядерная энергетика является устойчивым источником энергии, который уменьшает выбросы углекислого газа и может повысить энергетическую безопасность, если его использование вытесняет зависимость от импортного топлива. Сторонники продвигают идею, что ядерная энергетика практически почти не загрязняет воздух, в отличие от главной жизнеспособной альтернативы - ископаемого топлива. Сторонники также полагают, что ядерная энергетика является единственным реальным выходом для достижения энергетической независимости большинства Западных стран. Они подчеркивают, что риски хранения отходов невелики и могут быть дополнительно снижены за счет использования новейших технологий в новых реакторах, а также отчеты по эксплуатационной безопасности в Западном мире свидетельствуют об отличном состоянии АЭС по сравнению с другими основными видами электростанцций.

Противники утверждают, что ядерная энергетика создает много угроз для людей и окружающей среды, а также, что затраты не оправдывают выгоды. Угрозы включают в себя риски для здоровья и экологический ущерб от добычи, переработки и транспортировки урана, риск распространения ядерного оружия или саботажа, а также нерешенная проблема радиоактивных ядерных отходов. Другой экологической проблемой является сброс горячей воды в море. Горячая вода изменяет условия окружающей среды для морской флоры и фауны. Они также утверждают, что сами реакторы чрезвычайно сложные машины, где многие процессы могут и происходят не по плану, что уже приводило к многим серьезным ядерным авариям. Критики не верят, что эти риски могут быть снижены за счет новых технологий. Они утверждают, что, если рассматривать все энергоемкие этапы цепочки использования ядерного топлива, от добычи урана до вывода из эксплуатации ядерных объектов, то ядерная энергетика не является источником электроэнергии с низким содержанием углерода. Те страны, которые не имеют урановых рудников, не могут добиться энергетической независимости посредством существующих ядерно-энергетических технологий. Фактические затраты на строительство часто превышают смету и расходы на хранение отработанного топлива не имеют четких временных рамок.

Переработка ядерного топлива АЭС

Технология переработки ядерного топлива была разработана для химического разделения и восстановления делящегося плутония из облученного ядерного топлива. Переработка служит нескольким целям, относительное значение которых изменилось с течением времени. Первоначально переработка выполнялась исключительно для извлечения плутония для производства ядерного оружия. С коммерциализацией атомной энергетики отработанный плутоний перерабатывают обратно в смешанный оксид ядерного топлива для тепловых реакторов. Переработанный уран, который составляет большую часть отработанного топливного материала, в принципе, может также быть повторно использован в качестве топлива, но это экономически оправданно, только когда цены на уран высоки или его утилизация является дорогостоящей. И, наконец, реактор-размножитель может использовать не только переработанный плутоний и уран в отработанном топливе, но все актиниды, завершая ядерный топливный цикл и потенциально умножая энергию, извлеченную из природного урана более чем в 60 раз.

Переработка ядерного топлива уменьшает объем высокорадиоактивных отходов, но сама по себе не уменьшает радиоактивность или выделение тепла и, следовательно, не устраняет необходимость в хранении отходов в геологических формациях. Переработка вызывает политические споры из-за возможности способствовать распространению ядерного оружия, потенциальной уязвимости к ядерному терроризму, политических проблем выбора площадки для хранилища (проблема, которая в равной степени относится к прямой утилизации отработавшего ядерного топлива), а также из-за ее высокой стоимости по сравнению с однократным топливным циклом. В Соединенных Штатах Америки администрация Обамы отступила от планов президента Буша на переработку в промышленных масштабах и вернулась к программе, ориентированной на переработку, связанную с научными исследованиями.

Аварии на атомных электростанциях

Венская Конвенция о Гражданской Ответственности за Ядерный Ущерб установила международные рамки ядерной ответственности. Однако государства с большинством атомных электростанций в мире, в том числе США, Россия, Китай и Япония, не являются участниками международных конвенций по ядерной ответственности.

В США страхование ядерных или радиационных инцидентов покрывается (для объектов, имеющих лицензию до 2025 года) в соответствии с Законом Прайса-Андерсона о Гарантиях Ядерной Промышленности.

В соответствии с Энергетической политикой Соединенного Королевства посредством Закона о Ядерных Установках 1965 года регулируется ответственность за ядерный ущерб, за который несет ответственность британский владелец лицензии на ядерную энергетику. Закон требует, чтобы ответственный оператор выплатил компенсацию ущерба в пределах 150 миллионов фунтов стерлингов в течение десяти лет после инцидента. Через десять лет в течение последующих двадцати лет правительство несет ответственность за данное обязательство. Правительство также несет ответственность за дополнительное ограниченное межгосударственное обязательство (около 300 миллионов фунтов стерлингов) в рамках международных конвенций (Парижской Конвенции об Ответственности Перед Третьей Стороной в Области Ядерной Энергетики и Брюссельской Конвенции дополнительно к Парижской Конвенции).

Вывод АЭС из эксплуатации

Вывод из эксплуатации ядерных объектов представляет собой демонтаж атомной электростанции и дезактивацию участка до состояния, не представляющего радиационную опасность для гражданского населения. Основным отличием от демонтажа других видов электростанций является наличие радиоактивного материала, вывоз и перемещение которого в хранилище отходов требует соблюдения специальных мер предосторожности.

Вообще говоря, атомные станции были спроектированы с учетом срока службы около 30 лет. Новые станции спроектированы с эксплуатационным ресурсом от 40 до 60 лет. Одним из факторов износа является ухудшение состояния экрана реакторов под действием нейтронного облучения.

Вывод из эксплуатации включает в себя множество административных и технических мер. Он включает в себя полную очистку радиоактивности и абсолютный снос станции. После того как объект выведен из эксплуатации он не должен больше представлять никакой опасности радиоактивной аварии или быть опасным для здоровья его посетителей. После полного выведения объекта из эксплуатации он освобождается от регулирующего контроля, а лицензиат станции больше не несет ответственность за ее ядерную безопасность.

Исторические происшествия на АЭС

Атомная промышленность утверждает, что новые технологии и контроль сделали атомные станции ​​гораздо безопаснее, но после катастрофы на Чернобыльской АЭС в 1986 году и до 2008 года произошли 57 небольших аварий, две трети из которых произошли в США. Французское Агентство по Атомной Энергии (CEA) пришло к выводу, что технические инновации не могут полностью исключить риск человеческого фактора в работе атомной станции.

По словам Бенджамина Совакоола в 2003 году междисциплинарная команда Массачусетского технологического института (MIT) подсчитала, что с учетом ожидаемого роста ядерной энергетики в период с 2005 по 2055 годы можно ожидать, по крайней мере, четыре серьезные ядерные аварии. Однако исследование MIT не учитывает улучшения безопасности с 1970 года.

Преимущества атомной энергетики

Атомные станции используются в основном для базовой нагрузки из-за экономических соображений. Стоимость топлива для работы атомной электростанции меньше, чем стоимость топлива для эксплуатации угольных или газовых электростанций. Работа атомной станция не на полную мощность не является экономически оправданной.

Тем не менее, во Франции атомные станции работают преимущественно в режиме следования за нагрузкой, хотя "принято считать, что это не является идеальной экономической ситуацией для атомных станций." Блок A на АЭС Библис в Германии спроектирован с возможностью увеличения и уменьшения выработки электроэнергии на 15% в минуту от 40% до 100% его номинальной мощности. Реакторы с кипящей водой обычно имеют возможность следования за нагрузкой, осуществляемую за счет изменения потока рециркулируемой воды.

Проекты будущих электростанций

Новое поколение конструкций для атомных электростанций, известное как реакторы IV Поколения, является предметом активных исследований. Многие из этих новых проектов специально пытаются сделать реакторы ядерного деления чище, безопаснее и / или представляющими меньше рисков для распространения ядерного оружия. Могут быть построены пассивно безопасные станции (например, экономичный упрощённый ядерный реактор с кипящей водой), в то время как целью исследований является разработка реакторов почти с полным исключением влияния на них человеческого фактора. В термоядерных реакторах, которые еще находятся на ранних стадиях развития, уменьшены или устранены некоторые из рисков, связанные с ядерным делением.

Два Европейских реактора с водой под давлением (EPR) суммарной мощностью 1600 MВт строятся в Европе, и два строятся в Китае. Реакторы являются совместным проектом французской корпорации AREVA и немецкой Siemens AG и будут крупнейшими реакторами в мире. Один EPR находится в г. Олкилуото в Финляндии и является частью Олкилуото АЭС. Первоначально было запланировано запустить реактор в 2009 году, но запуск неоднократно откладывался, и по состоянию на сентябрь 2014 года был перенесен на 2018 год. Подготовительные работы для EPR на Фламанвильской АЭС в г. Фламанвиль, Манш во Франции были начаты в 2006 году с запланированной датой завершения в 2012 году. Запуск французского реактора также был задержан, и согласно прогнозам 2013 года его планировали запустить в 2016 году. Два китайских EPR являются частью Тайшанской АЭС в г. Тайшан, Гуандун. Запуск реакторов Тайшанской АЭС был запланирован на 2014 и 2015 годы, но был отложен до 2017 года.

По состоянию на март 2007 года семь атомных электростанций в Индии и пять в Китае находятся на стадии строительства.

В ноябре 2011 года компания Gulf Power заявила, что к концу 2012 года она надеется закончить покупку 4000 акров земли к северу от г. Пенсакола в штате Флорида, чтобы построить возможную атомную электростанцию.

В 2010 году Россия ввела в эксплуатацию плавучую атомную электростанцию. Судно Академик Ломоносова стоимостью 100 миллионов фунтов стерлингов является первой из семи станций, которые обеспечат отдаленные регионы России жизненно важными энергетическими ресурсами.

Не имея ни одной АЭС в 2011 году, к 2025 году страны Юго-Восточной Азии будут иметь в общей сложности 29 атомных электростанций: Индонезия будет иметь 4 атомные электростанции, Малайзия - 4, Таиланд - 5, а Вьетнам - 16.

В 2013 году в Китае на стадии строительства было 32 атомных реактора - наибольшее число в мире.

В период с 2016 по 2019 год планируется завершить расширение двух атомных электростанций в Соединенных Штатах Америки, а именно: АЭС Вогтль в Джорджии и АЭС Ви-Си Саммер в Южной Каролине. Два новых реактора на АЭС Вогтль и два новых реактора на АЭС Ви-Си Саммер являются первыми проектами строительства атомной электростанции в Соединенных Штатах Америки с момента аварии на АЭС Три-Майл-Айленд в 1979 году.

Правительство Великобритании одобрило строительство АЭС Хинкли-Пойнт C.

Несколько стран приступили к реализации ториевой ядерной программы. Торий встречается в природе в четыре раза чаще урана. Более 60% залежей руды тория - монацита - в находится в пяти странах: Австралии, США, Индии, Бразилии и Норвегии. Этих ториевых ресурсов достаточно для обеспечения текущих энергетических потребностей в течение тысяч лет. Ториевый топливный цикл способен генерировать атомную энергию с более низким выходом радиотоксичных отходов, чем урановый топливный цикл.

Ядерную энергию используют в теплоэнергетике, когда из ядерного топлива в реакторах получают энергию в форме тепла. Оно используется для выработки электрической энергии в атомных электростанциях (АЭС) , для энергетических установок крупных морских судов, для опреснения морской воды.

Ядерная энергетика обязана своим появлением, в первую очередь, природе открытого в 1932 году нейтрона. Нейтроны входят в состав всех атомных ядер, кроме ядра водорода. Связанные нейтроны в ядре существуют бесконечно долго. В свободном виде они недолговечны, так как или распадаются с периодом полураспада 11,7 минуты, превращаясь в протон и испуская при этом электрон и нейтрино, или быстро захватываются ядрами атомов.

Современная ядерная энергетика основана на использовании энергии, выделяющейся при делении природного изотопа урана-235 . На атомных электростанциях управляемая реакция деления ядер осуществляется в ядерном реакторе . По энергии нейтронов, производящих деление ядер, различают реакторы на тепловых и на быстрых нейтронах .

Основной агрегат атомной электростанции — ядерный реактор, схема которого показана на рис. 1. Получают энергию из ядерного топлива, а затем она передается другому рабочему телу (воде, металлической или органической жидкости, газу) в форме тепла; далее ее превращают в электричество по той же схеме, что и в обычных .

Управляют процессом, поддерживают реакцию, стабилизируют мощность, осуществляют пуск и остановку реактора с помощью специальных подвижных управляющих стержней 6 и 7 из материалов, интенсивно поглощающих тепловые нейтроны. Их приводят в движение с помощью системы управления 5 . Действия регулирующих стержней проявляются в изменение мощности потока нейтронов в активной зоне. По каналам 10 циркулирует вода, охлаждающая бетон биологической защиты

Управляющие стержни изготовлены из бора или кадмия, которые термически, радиационно и коррозионно устойчивы, механически прочны, имеют хорошие теплопередающие свойства.

Внутри массивного стального корпуса 3 находится корзина 8 с тепловыделяющими элементами 9 . Теплоноситель поступает по трубопроводу 2 , проходит через активную зону, омывает все тепловыделяющие элементы, нагревается и по трубопроводу 4 поступает в парогенератор.

Рис. 1. Ядерный реактор

Реактор размещен внутри толстого бетонного биологического защитного устройства 1 , которое защищает окружающее пространство от потока нейтронов, альфа-, бета-, гамма-излучения.

Тепловыделяющие элементы (твэлы) — главная часть реактора. В них непосредственно происходит ядерная реакция и выделяется тепло, все остальные части служат для изоляции, управления и отвода тепла. Конструктивно твэлы можно выполнить стержневыми, пластинчатыми, трубчатыми, шаровыми и т. д. Чаще всего они стержневые, длиной до 1 метра, диаметром 10 мм. Обычно их собирают из урановых таблеток или из коротких трубок и пластин. Снаружи твэлы покрыты коррозионностойкой, тонкой металлической оболочкой. На оболочку используются циркониевые, алюминиевые, магниевые сплавы, а также легированная нержавеющая сталь.

Передача тепла, выделяющегося при ядерной реакции в активной зоне реактора, к рабочему телу двигателя (турбины) энергетических установок осуществляется по одноконтурной, двухконтурной и трехконтурной схемам (рис. 2).

Рис. 2. Ядерная энергетическая установка
а – по одноконтурной схеме; б – по двухконтурной схеме; в – по трёхконтурной схеме
1 – реактор; 2, 3 – биологическая защита; 4 – регулятор давления; 5 – турбина; 6 – электрогенератор; 7 – конденсатор; 8 – насос; 9 – резервная ёмкость; 10 – регенеративный подогреватель; 11 – парогенератор; 12 – насос; 13 – промежуточный теплообменник

Каждый контур — замкнутая система. Реактор 1 (во всех тепловых схемах) размещен внутри первичной 2 и вторичной 3 биологических защит. Если АЭС построена по одноконтурной тепловой схеме, пар из реактора через регулятор давления 4 поступает в турбину 5 . Вал турбины соединен с валом электрогенератора 6 , в котором вырабатывается электрический ток. Отработавший пар поступает в конденсатор, где охлаждается и полностью конденсируется. Насос 8 направляет конденсат в регенеративный подогреватель 10 , и далее он поступает в реактор.

При двухконтурной схеме нагретый в реакторе теплоноситель поступает в парогенератор 11 , где тепло поверхностным подогревом передается теплоносителю рабочего тела (питательной воде второго контура). В водо-водяных реакторах теплоноситель в парогенераторе охлаждается примерно на 15…40 о С и далее циркуляционным насосом 12 обратно направляется в реактор.


При трехконтурной схеме теплоноситель (обычно жидкий натрий) из реактора направляется в промежуточный теплообменник 13 и оттуда циркуляционным насосом 12 возвращается в реактор. Теплоноситель во втором контуре тоже жидкий натрий. Этот контур не облучается и, следовательно, нерадиоактивен. Натрий второго контура поступает в парогенератор 11 , отдает тепло рабочему телу, а затем циркуляционным насосом отправляется обратно в промежуточный теплообменник.

Число циркуляционных контуров определяет тип реактора, применяемый теплоноситель, его ядерно-физические свойства, степень радиоактивности. Одноконтурная схема может быть использована в кипящих реакторах и в реакторах с газовым теплоносителем. Наибольшее распространение получила двухконтурная схема при использовании в качестве теплоносителя воды, газа и органических жидкостей. Трехконтурная схема применяется на АЭС с реакторами на быстрых нейтронах при использовании жидкометаллических теплоносителей (натрий, калий, сплавы натрий-калий).

Ядерным горючим могут быть уран-235, уран-233 и плутоний-232 . Сырье для получения ядерного топлива — природный уран и торий . При ядерной реакции одного грамма делящегося вещества (уран-235) освобождается энергия, эквивалентная 22×10 3 кВт × ч (19×10 6 кал). Для получения такого количества энергии необходимо сжечь 1900 кг нефти.

Уран-235 легко доступен, его энергетические запасы примерно такие же, как и органического топлива. Однако при использовании ядерного топлива с такой низкой эффективностью, как ныне, доступные урановые источники будут истощены через 50-100 лет. В то же время практически неисчерпаемы «залежи» ядерного топлива — это уран, растворенный в морской воде. В океане его в сотни раз больше, чем на суше. Стоимость получения одного килограмма двуокиси урана из морской воды около 60-80$, а в перспективе снизится до 30$, а стоимость двуокиси урана, добываемой в наиболее богатых месторождениях на суше, 10-20$. Стало быть, через некоторое время затраты на суше и «на морской воде» станут одного и того же порядка.

Стоимость ядерного топлива примерно в два раза ниже, чем ископаемых углей. На электростанциях, работающих на угле, на долю горючего падает 50-70% стоимости электроэнергии, а на АЭС — 15-30%. Современная ТЭС мощностью 2,3 млн кВт (например, Самарская ГРЭС) ежесуточно потребляет около 18 тонн угля (6 железнодорожных составов) или 12 тыс. тонн мазута (4 железнодорожных состава). Атомная же, такой же мощности, расходует в течение суток всего 11 кг ядерного горючего, а в течение года 4 тонны. Однако атомная электростанция дороже тепловой с точки зрения строительства, эксплуатации, ремонта. Например, сооружение АЭС мощностью 2 — 4 млн кВт обходится примерно на 50-100 % дороже, чем тепловой.

Уменьшить капитальные затраты на строительство АЭС возможно за счет:

  1. стандартизации и унификации оборудования;
  2. разработки компактных конструкций реакторов;
  3. совершенствования систем управления и регулирования;
  4. сокращения продолжительности остановки реактора для перегрузки топлива.

Важной характеристикой ядерных энергетических установок (ядерного реактора) является экономичность топливного цикла. Чтобы повысить экономичность топливного цикла, следует:

  • увеличить глубину выгорания ядерного топлива;
  • поднять коэффициент воспроизводства плутония.

При каждом делении ядра урана-235 освобождается 2-3 нейтрона. Из них для дальнейшей реакции используют только один, остальные теряются. Однако существует возможность использовать их для воспроизводства ядерного топлива, создавая реакторы на быстрых нейтронах. При работе реактора на быстрых нейтронах можно на 1 кг сожженного урана-235 одновременно получить примерно 1,7 кг плутония-239. Таким образом можно покрыть низкий термический КПД АЭС.

Реакторы на быстрых нейтронах в десятки раз эффективнее (в плане использования ядерного топлива) реакторов на топливных нейтронах. В них отсутствует замедлитель, применяется высокообогащенное ядерное горючее. Вылетающие из активной зоны нейтроны поглощаются не конструктивными материалами, а расположенным вокруг ураном-238 или торием-232.

В будущем основными делящимися материалами для атомных энергетических установок станут плутоний-239 и уран-233, полученных соответственно из урана-238 и тория-232 в реакторах на быстрых нейтронах. Превращение в реакторах урана -238 в плутоний-239 увеличит ресурсы ядерного топлива примерно в 100 раз, а тория-232 в уран-233 — в 200 раз.

На рис. 3 приведена схема ядерной энергетической установки на быстрых нейтронах.

Отличительными особенностями ядерной электроустановки на быстрых нейтронах являются:

  1. изменение критичности ядерного реактора осуществляется за счет отражения части нейтронов деления ядерного топлива с периферии обратно в активную зону при помощи отражателей 3 ;
  2. отражатели 3 могут поворачиваться, изменяя утечку нейтронов и, следовательно, интенсивность реакций деления;
  3. воспроизводится ядерное топливо;
  4. отвод излишней тепловой энергии от реактора осуществляется при помощи холодильника-излучателя 6 .

Рис. 3. Схема ядерной энергетической установки на быстрых нейтронах:
1 – тепловыделяющие элементы; 2 – воспроизводимое ядерное топливо; 3 – отражатели быстрых нейтронов; 4 – ядерный реактор; 5 – потребитель электроэнергии; 6 – холодильник-излучатель; 7 – преобразователь тепловой энергии в электрическую; 8 – радиационная защита.

Преобразователи тепловой энергии в электрическую

По принципу использования тепловой энергии, вырабатываемой ядерной энергетической установкой, преобразователи можно разделить на 2 класса:

  1. машинные (динамические);
  2. безмашинные (прямые преобразователи).

В машинных преобразователях с реактором обычно связывают газотурбинную установку, в которой рабочим телом может быть водород, гелий, гелий-ксеноновая смесь. Эффективность преобразования в электроэнергию тепла, подведенного непосредственно к турбогенератору, достаточно высока — КПД преобразователя η= 0,7-0,75.

Схема ядерной энергетической установки с динамическим газотурбинным (машинным) преобразователем показана на рис. 4.

Другой тип машинного преобразователя — магнитогазодинамический или магнитогидродинамический генератор (МГДГ). Схема такого генератора приведена на рис. 5. Генератор представляет собой канал прямоугольного сечения, две стенки которого выполнены из диэлектрика, а две — из электропроводящего материала. По каналам движется электропроводящее рабочее тело — жидкое или газообразное, которое пронизывается магнитным полем. Как известно, при движении проводника в магнитном поле возникает ЭДС, которая по электродам 2 передается потребителю электроэнергии 3 . Источником энергии потока рабочего тепла является тепло, выделяющееся в ядерном реакторе. Эта тепловая энергия затрачивается на перемещение зарядов в магнитном поле, т.е. превращается в кинетическую энергию токопроводящей струи, а кинетическая энергия — в электрическую.

Рис. 4. Схема ядерной энергоустановки с газотурбинным преобразователем:
1 – реактор; 2 – контур с жидкометаллическим теплоносителем; 3 – теплообменник для подвода теплоты к газу; 4 – турбина; 5 – электрогенератор; 6 – компрессор; 7 – холодильник-излучатель; 8 – контур отвода теплоты; 9 – насос циркуляционный; 10 – теплообменник для отвода теплоты; 11 – теплообменник-регенератор; 12 – контур с рабочим телом газотурбинного преобразователя.

Прямые преобразователи (безмашинные) тепловой энергии в электрическую подразделяются на:

  1. термоэлектрические;
  2. термоэмиссионные;
  3. электрохимические.

Термоэлектрические генераторы (ТЭГ) основаны на принципе Зеебека, заключающемся в том, что в замкнутой цепи, состоящей из разнородных материалов, возникает термо-ЭДС, если поддерживается разность температур в местах контакта этих материалов (рис. 6). Для получения электроэнергии целесообразно использовать полупроводниковые ТЭГ, имеющие более высокий КПД, при этом температуру горячего спая нужно доводить до 1400 К и выше.

Термоэмиссионные преобразователи (ТЭП) позволяют получать электроэнергию в результате эмиссии электронов с нагретого до высоких температур катода (рис. 7).

Рис. 5. Магнитогазодинамический генератор:
1 – магнитное поле; 2 – электроды; 3 – потребитель электроэнергии; 4 – диэлектрик; 5 – проводник; 6 – рабочее тело (газ).

Рис. 6. Схема работы термоэлектрического генератора

Рис. 7. Схема работы термоэмиссионного преобразователя

Для поддержания тока эмиссии к катоду подводится теплота Q 1 . Эмитируемые катодом электроны, преодолев вакуумный промежуток, достигают анода и поглощаются им. При «конденсации» электронов на аноде выделяется энергия, равная работе выхода электронов с противоположным знаком. Если обеспечить непрерывный подвод теплоты к катоду и отвод её от анода, то через нагрузку R потечет постоянный ток. Электронная эмиссия протекает эффективно при температурах катода выше 2200 К.

Безопасность и надежность работы АЭС

Одним из главных вопросов развития атомной энергетики является обеспечение надёжности и безопасности работы АЭС.

Радиационная безопасность обеспечивается:

  1. созданием надёжных конструкций и устройств биологической защиты персонала от облучений;
  2. очисткой воздуха и воды, выходящих из помещений АЭС за ее пределы;
  3. извлечением и надёжной локализацией радиоактивных загрязнений;
  4. повседневным дозиметрическим контролем помещений АЭС и индивидуальным дозиметрическим контролем персонала.

Помещения АЭС в зависимости от режима работы и установленного в них оборудования делятся на 3 категории:

  1. зона строгого режима;
  2. зона ограниченного режима;
  3. зона нормального режима.

В помещениях третьей категории персонал находится постоянно, эти помещения на станции радиационно безопасны.

При работе АЭС образуются твёрдые, жидкие и газообразные радиоактивные отходы. Они должны выводиться так, чтобы не создавалось загрязнения окружающей среды.

Удаляемые из помещения газы при их вентиляции могут содержать радиоактивные вещества в виде аэрозолей, радиоактивную пыль и радиоактивные газы. Вентиляция станции строится так, чтобы потоки воздуха проходили из наиболее «чистых» в «загрязненные», а перетоки в обратном направлении исключались. Во всех помещениях станции полная замена воздуха производится в течение не более одного часа.

При эксплуатации АЭС возникает проблема удаления и захоронения радиоактивных отходов. Отработавшие в реакторах твэлы выдерживают определенное время в бассейнах с водой непосредственно на АЭС, пока не произойдет стабилизация изотопов с малым временем полураспада, после чего твэлы отправляются на специальные радиохимические заводы для регенерации. Там из твэлов извлекается ядерное горючее, а радиоактивные отходы подлежат захоронению.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама